Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene
A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculatio...
Gespeichert in:
Veröffentlicht in: | Advanced materials interfaces 2020-06, Vol.7 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Advanced materials interfaces |
container_volume | 7 |
creator | Sun, Weiwei Wang, Hsiu‐Wen Vlcek, Lukas Peng, Jing Brady, Alexander B. Osti, Naresh C. Mamontov, Eugene Tyagi, Madhusudan Nanda, Jagjit Greenbaum, Steven G. Kent, Paul R. C. Naguib, Michael |
description | A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage.
The ideal structural model of MXenes is commonly used without consideration of the complexity of surface and intercalant. Based on multiscale modeling and multimodal characterizations, it is found that the remnant Al ions and the composition of surface groups in Ti3CN are very unique in contrast to Ti3C2, and they result in larger d‐spacing of Ti3CN and lower water mobility compared to Ti3C2. |
doi_str_mv | 10.1002/admi.201902207 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1616483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410939411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4217-ce5ecfbb8d14a083cbc2525405addf6d34b6cbe34deb5c684647b699d0b841f33</originalsourceid><addsrcrecordid>eNqFkEtLw0AURgdRsNRuXQ-6Tp1XJsmypD4KLW4quBvmFTolydSZKVJ_va0RdefqfhfOd7kcAK4xmmKEyJ00nZsShCtECCrOwIjgimcFzdH5n3wJJjFuEUIYE0xKOgLL1b5NLmrZWih7A7_WzhvZwnojg9TJBvchk_M99A0kc7h2SfZu38FaBuV7l4IzFq5ebW-vwEUj22gn33MMXh7u1_VTtnx-XNSzZaYZwUWmbW51o1RpMJOopFppkpOcoVwa03BDmeJaWcqMVbnmJeOsULyqDFIlww2lY3Az3PUxORG1S1ZvtO97q5PAHHNWnqDbAdoF_7a3MYmt34f--JcgDKOKVgzjIzUdKB18jME2YhdcJ8NBYCROZsXJrPgxeyxUQ-HdtfbwDy1m89Xit_sJJFZ8Fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410939411</pqid></control><display><type>article</type><title>Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene</title><source>Wiley Journals</source><creator>Sun, Weiwei ; Wang, Hsiu‐Wen ; Vlcek, Lukas ; Peng, Jing ; Brady, Alexander B. ; Osti, Naresh C. ; Mamontov, Eugene ; Tyagi, Madhusudan ; Nanda, Jagjit ; Greenbaum, Steven G. ; Kent, Paul R. C. ; Naguib, Michael</creator><creatorcontrib>Sun, Weiwei ; Wang, Hsiu‐Wen ; Vlcek, Lukas ; Peng, Jing ; Brady, Alexander B. ; Osti, Naresh C. ; Mamontov, Eugene ; Tyagi, Madhusudan ; Nanda, Jagjit ; Greenbaum, Steven G. ; Kent, Paul R. C. ; Naguib, Michael</creatorcontrib><description>A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage.
The ideal structural model of MXenes is commonly used without consideration of the complexity of surface and intercalant. Based on multiscale modeling and multimodal characterizations, it is found that the remnant Al ions and the composition of surface groups in Ti3CN are very unique in contrast to Ti3C2, and they result in larger d‐spacing of Ti3CN and lower water mobility compared to Ti3C2.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201902207</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Density functional theory ; Elastic scattering ; Electron paramagnetic resonance ; Electron spin ; Electronic structure ; Energy storage ; Fluorine ; Hydroxyl groups ; Interlayers ; Molecular dynamics ; Molecular structure ; multiscale modeling ; MXenes ; Neutron scattering ; Neutrons ; NMR ; Nuclear magnetic resonance ; residual Al ions ; Resonance scattering ; Solid solutions ; solid‐solution MXenes ; Spin resonance ; Structural models ; Titanium carbonitride ; total and quasi‐elastic neutron scattering ; Water chemistry</subject><ispartof>Advanced materials interfaces, 2020-06, Vol.7 (11), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4217-ce5ecfbb8d14a083cbc2525405addf6d34b6cbe34deb5c684647b699d0b841f33</citedby><cites>FETCH-LOGICAL-c4217-ce5ecfbb8d14a083cbc2525405addf6d34b6cbe34deb5c684647b699d0b841f33</cites><orcidid>0000-0002-2802-4122 ; 0000-0002-0213-2299 ; 0000-0002-0997-6179 ; 0000-0002-6875-0057 ; 0000-0003-4782-7702 ; 0000-0002-5684-2675 ; 0000-0001-5497-5274 ; 0000-0002-4952-9023 ; 0000-0002-5535-0660 ; 0000-0001-5539-4017 ; 0000000155394017 ; 0000000209976179 ; 0000000268750057 ; 0000000249529023 ; 0000000256842675 ; 0000000255350660 ; 0000000202132299 ; 0000000154975274 ; 0000000347827702 ; 0000000228024122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201902207$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201902207$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1616483$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Wang, Hsiu‐Wen</creatorcontrib><creatorcontrib>Vlcek, Lukas</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Brady, Alexander B.</creatorcontrib><creatorcontrib>Osti, Naresh C.</creatorcontrib><creatorcontrib>Mamontov, Eugene</creatorcontrib><creatorcontrib>Tyagi, Madhusudan</creatorcontrib><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Greenbaum, Steven G.</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><title>Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene</title><title>Advanced materials interfaces</title><description>A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage.
The ideal structural model of MXenes is commonly used without consideration of the complexity of surface and intercalant. Based on multiscale modeling and multimodal characterizations, it is found that the remnant Al ions and the composition of surface groups in Ti3CN are very unique in contrast to Ti3C2, and they result in larger d‐spacing of Ti3CN and lower water mobility compared to Ti3C2.</description><subject>Density functional theory</subject><subject>Elastic scattering</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electronic structure</subject><subject>Energy storage</subject><subject>Fluorine</subject><subject>Hydroxyl groups</subject><subject>Interlayers</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>multiscale modeling</subject><subject>MXenes</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>residual Al ions</subject><subject>Resonance scattering</subject><subject>Solid solutions</subject><subject>solid‐solution MXenes</subject><subject>Spin resonance</subject><subject>Structural models</subject><subject>Titanium carbonitride</subject><subject>total and quasi‐elastic neutron scattering</subject><subject>Water chemistry</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AURgdRsNRuXQ-6Tp1XJsmypD4KLW4quBvmFTolydSZKVJ_va0RdefqfhfOd7kcAK4xmmKEyJ00nZsShCtECCrOwIjgimcFzdH5n3wJJjFuEUIYE0xKOgLL1b5NLmrZWih7A7_WzhvZwnojg9TJBvchk_M99A0kc7h2SfZu38FaBuV7l4IzFq5ebW-vwEUj22gn33MMXh7u1_VTtnx-XNSzZaYZwUWmbW51o1RpMJOopFppkpOcoVwa03BDmeJaWcqMVbnmJeOsULyqDFIlww2lY3Az3PUxORG1S1ZvtO97q5PAHHNWnqDbAdoF_7a3MYmt34f--JcgDKOKVgzjIzUdKB18jME2YhdcJ8NBYCROZsXJrPgxeyxUQ-HdtfbwDy1m89Xit_sJJFZ8Fw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Sun, Weiwei</creator><creator>Wang, Hsiu‐Wen</creator><creator>Vlcek, Lukas</creator><creator>Peng, Jing</creator><creator>Brady, Alexander B.</creator><creator>Osti, Naresh C.</creator><creator>Mamontov, Eugene</creator><creator>Tyagi, Madhusudan</creator><creator>Nanda, Jagjit</creator><creator>Greenbaum, Steven G.</creator><creator>Kent, Paul R. C.</creator><creator>Naguib, Michael</creator><general>John Wiley & Sons, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2802-4122</orcidid><orcidid>https://orcid.org/0000-0002-0213-2299</orcidid><orcidid>https://orcid.org/0000-0002-0997-6179</orcidid><orcidid>https://orcid.org/0000-0002-6875-0057</orcidid><orcidid>https://orcid.org/0000-0003-4782-7702</orcidid><orcidid>https://orcid.org/0000-0002-5684-2675</orcidid><orcidid>https://orcid.org/0000-0001-5497-5274</orcidid><orcidid>https://orcid.org/0000-0002-4952-9023</orcidid><orcidid>https://orcid.org/0000-0002-5535-0660</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000209976179</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><orcidid>https://orcid.org/0000000249529023</orcidid><orcidid>https://orcid.org/0000000256842675</orcidid><orcidid>https://orcid.org/0000000255350660</orcidid><orcidid>https://orcid.org/0000000202132299</orcidid><orcidid>https://orcid.org/0000000154975274</orcidid><orcidid>https://orcid.org/0000000347827702</orcidid><orcidid>https://orcid.org/0000000228024122</orcidid></search><sort><creationdate>20200601</creationdate><title>Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene</title><author>Sun, Weiwei ; Wang, Hsiu‐Wen ; Vlcek, Lukas ; Peng, Jing ; Brady, Alexander B. ; Osti, Naresh C. ; Mamontov, Eugene ; Tyagi, Madhusudan ; Nanda, Jagjit ; Greenbaum, Steven G. ; Kent, Paul R. C. ; Naguib, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4217-ce5ecfbb8d14a083cbc2525405addf6d34b6cbe34deb5c684647b699d0b841f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Density functional theory</topic><topic>Elastic scattering</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electronic structure</topic><topic>Energy storage</topic><topic>Fluorine</topic><topic>Hydroxyl groups</topic><topic>Interlayers</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>multiscale modeling</topic><topic>MXenes</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>residual Al ions</topic><topic>Resonance scattering</topic><topic>Solid solutions</topic><topic>solid‐solution MXenes</topic><topic>Spin resonance</topic><topic>Structural models</topic><topic>Titanium carbonitride</topic><topic>total and quasi‐elastic neutron scattering</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Wang, Hsiu‐Wen</creatorcontrib><creatorcontrib>Vlcek, Lukas</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Brady, Alexander B.</creatorcontrib><creatorcontrib>Osti, Naresh C.</creatorcontrib><creatorcontrib>Mamontov, Eugene</creatorcontrib><creatorcontrib>Tyagi, Madhusudan</creatorcontrib><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Greenbaum, Steven G.</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Weiwei</au><au>Wang, Hsiu‐Wen</au><au>Vlcek, Lukas</au><au>Peng, Jing</au><au>Brady, Alexander B.</au><au>Osti, Naresh C.</au><au>Mamontov, Eugene</au><au>Tyagi, Madhusudan</au><au>Nanda, Jagjit</au><au>Greenbaum, Steven G.</au><au>Kent, Paul R. C.</au><au>Naguib, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene</atitle><jtitle>Advanced materials interfaces</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>7</volume><issue>11</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage.
The ideal structural model of MXenes is commonly used without consideration of the complexity of surface and intercalant. Based on multiscale modeling and multimodal characterizations, it is found that the remnant Al ions and the composition of surface groups in Ti3CN are very unique in contrast to Ti3C2, and they result in larger d‐spacing of Ti3CN and lower water mobility compared to Ti3C2.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/admi.201902207</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2802-4122</orcidid><orcidid>https://orcid.org/0000-0002-0213-2299</orcidid><orcidid>https://orcid.org/0000-0002-0997-6179</orcidid><orcidid>https://orcid.org/0000-0002-6875-0057</orcidid><orcidid>https://orcid.org/0000-0003-4782-7702</orcidid><orcidid>https://orcid.org/0000-0002-5684-2675</orcidid><orcidid>https://orcid.org/0000-0001-5497-5274</orcidid><orcidid>https://orcid.org/0000-0002-4952-9023</orcidid><orcidid>https://orcid.org/0000-0002-5535-0660</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000209976179</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><orcidid>https://orcid.org/0000000249529023</orcidid><orcidid>https://orcid.org/0000000256842675</orcidid><orcidid>https://orcid.org/0000000255350660</orcidid><orcidid>https://orcid.org/0000000202132299</orcidid><orcidid>https://orcid.org/0000000154975274</orcidid><orcidid>https://orcid.org/0000000347827702</orcidid><orcidid>https://orcid.org/0000000228024122</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2196-7350 |
ispartof | Advanced materials interfaces, 2020-06, Vol.7 (11), p.n/a |
issn | 2196-7350 2196-7350 |
language | eng |
recordid | cdi_osti_scitechconnect_1616483 |
source | Wiley Journals |
subjects | Density functional theory Elastic scattering Electron paramagnetic resonance Electron spin Electronic structure Energy storage Fluorine Hydroxyl groups Interlayers Molecular dynamics Molecular structure multiscale modeling MXenes Neutron scattering Neutrons NMR Nuclear magnetic resonance residual Al ions Resonance scattering Solid solutions solid‐solution MXenes Spin resonance Structural models Titanium carbonitride total and quasi‐elastic neutron scattering Water chemistry |
title | Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20and%20Multimodal%20Characterization%20of%202D%20Titanium%20Carbonitride%20MXene&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Sun,%20Weiwei&rft.date=2020-06-01&rft.volume=7&rft.issue=11&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201902207&rft_dat=%3Cproquest_osti_%3E2410939411%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410939411&rft_id=info:pmid/&rfr_iscdi=true |