Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene

A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials interfaces 2020-06, Vol.7 (11), p.n/a
Hauptverfasser: Sun, Weiwei, Wang, Hsiu‐Wen, Vlcek, Lukas, Peng, Jing, Brady, Alexander B., Osti, Naresh C., Mamontov, Eugene, Tyagi, Madhusudan, Nanda, Jagjit, Greenbaum, Steven G., Kent, Paul R. C., Naguib, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Advanced materials interfaces
container_volume 7
creator Sun, Weiwei
Wang, Hsiu‐Wen
Vlcek, Lukas
Peng, Jing
Brady, Alexander B.
Osti, Naresh C.
Mamontov, Eugene
Tyagi, Madhusudan
Nanda, Jagjit
Greenbaum, Steven G.
Kent, Paul R. C.
Naguib, Michael
description A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage. The ideal structural model of MXenes is commonly used without consideration of the complexity of surface and intercalant. Based on multiscale modeling and multimodal characterizations, it is found that the remnant Al ions and the composition of surface groups in Ti3CN are very unique in contrast to Ti3C2, and they result in larger d‐spacing of Ti3CN and lower water mobility compared to Ti3C2.
doi_str_mv 10.1002/admi.201902207
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1616483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2410939411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4217-ce5ecfbb8d14a083cbc2525405addf6d34b6cbe34deb5c684647b699d0b841f33</originalsourceid><addsrcrecordid>eNqFkEtLw0AURgdRsNRuXQ-6Tp1XJsmypD4KLW4quBvmFTolydSZKVJ_va0RdefqfhfOd7kcAK4xmmKEyJ00nZsShCtECCrOwIjgimcFzdH5n3wJJjFuEUIYE0xKOgLL1b5NLmrZWih7A7_WzhvZwnojg9TJBvchk_M99A0kc7h2SfZu38FaBuV7l4IzFq5ebW-vwEUj22gn33MMXh7u1_VTtnx-XNSzZaYZwUWmbW51o1RpMJOopFppkpOcoVwa03BDmeJaWcqMVbnmJeOsULyqDFIlww2lY3Az3PUxORG1S1ZvtO97q5PAHHNWnqDbAdoF_7a3MYmt34f--JcgDKOKVgzjIzUdKB18jME2YhdcJ8NBYCROZsXJrPgxeyxUQ-HdtfbwDy1m89Xit_sJJFZ8Fw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2410939411</pqid></control><display><type>article</type><title>Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene</title><source>Wiley Journals</source><creator>Sun, Weiwei ; Wang, Hsiu‐Wen ; Vlcek, Lukas ; Peng, Jing ; Brady, Alexander B. ; Osti, Naresh C. ; Mamontov, Eugene ; Tyagi, Madhusudan ; Nanda, Jagjit ; Greenbaum, Steven G. ; Kent, Paul R. C. ; Naguib, Michael</creator><creatorcontrib>Sun, Weiwei ; Wang, Hsiu‐Wen ; Vlcek, Lukas ; Peng, Jing ; Brady, Alexander B. ; Osti, Naresh C. ; Mamontov, Eugene ; Tyagi, Madhusudan ; Nanda, Jagjit ; Greenbaum, Steven G. ; Kent, Paul R. C. ; Naguib, Michael</creatorcontrib><description>A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage. The ideal structural model of MXenes is commonly used without consideration of the complexity of surface and intercalant. Based on multiscale modeling and multimodal characterizations, it is found that the remnant Al ions and the composition of surface groups in Ti3CN are very unique in contrast to Ti3C2, and they result in larger d‐spacing of Ti3CN and lower water mobility compared to Ti3C2.</description><identifier>ISSN: 2196-7350</identifier><identifier>EISSN: 2196-7350</identifier><identifier>DOI: 10.1002/admi.201902207</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Density functional theory ; Elastic scattering ; Electron paramagnetic resonance ; Electron spin ; Electronic structure ; Energy storage ; Fluorine ; Hydroxyl groups ; Interlayers ; Molecular dynamics ; Molecular structure ; multiscale modeling ; MXenes ; Neutron scattering ; Neutrons ; NMR ; Nuclear magnetic resonance ; residual Al ions ; Resonance scattering ; Solid solutions ; solid‐solution MXenes ; Spin resonance ; Structural models ; Titanium carbonitride ; total and quasi‐elastic neutron scattering ; Water chemistry</subject><ispartof>Advanced materials interfaces, 2020-06, Vol.7 (11), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4217-ce5ecfbb8d14a083cbc2525405addf6d34b6cbe34deb5c684647b699d0b841f33</citedby><cites>FETCH-LOGICAL-c4217-ce5ecfbb8d14a083cbc2525405addf6d34b6cbe34deb5c684647b699d0b841f33</cites><orcidid>0000-0002-2802-4122 ; 0000-0002-0213-2299 ; 0000-0002-0997-6179 ; 0000-0002-6875-0057 ; 0000-0003-4782-7702 ; 0000-0002-5684-2675 ; 0000-0001-5497-5274 ; 0000-0002-4952-9023 ; 0000-0002-5535-0660 ; 0000-0001-5539-4017 ; 0000000155394017 ; 0000000209976179 ; 0000000268750057 ; 0000000249529023 ; 0000000256842675 ; 0000000255350660 ; 0000000202132299 ; 0000000154975274 ; 0000000347827702 ; 0000000228024122</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmi.201902207$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmi.201902207$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1616483$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Wang, Hsiu‐Wen</creatorcontrib><creatorcontrib>Vlcek, Lukas</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Brady, Alexander B.</creatorcontrib><creatorcontrib>Osti, Naresh C.</creatorcontrib><creatorcontrib>Mamontov, Eugene</creatorcontrib><creatorcontrib>Tyagi, Madhusudan</creatorcontrib><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Greenbaum, Steven G.</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><title>Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene</title><title>Advanced materials interfaces</title><description>A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage. The ideal structural model of MXenes is commonly used without consideration of the complexity of surface and intercalant. Based on multiscale modeling and multimodal characterizations, it is found that the remnant Al ions and the composition of surface groups in Ti3CN are very unique in contrast to Ti3C2, and they result in larger d‐spacing of Ti3CN and lower water mobility compared to Ti3C2.</description><subject>Density functional theory</subject><subject>Elastic scattering</subject><subject>Electron paramagnetic resonance</subject><subject>Electron spin</subject><subject>Electronic structure</subject><subject>Energy storage</subject><subject>Fluorine</subject><subject>Hydroxyl groups</subject><subject>Interlayers</subject><subject>Molecular dynamics</subject><subject>Molecular structure</subject><subject>multiscale modeling</subject><subject>MXenes</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>residual Al ions</subject><subject>Resonance scattering</subject><subject>Solid solutions</subject><subject>solid‐solution MXenes</subject><subject>Spin resonance</subject><subject>Structural models</subject><subject>Titanium carbonitride</subject><subject>total and quasi‐elastic neutron scattering</subject><subject>Water chemistry</subject><issn>2196-7350</issn><issn>2196-7350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLw0AURgdRsNRuXQ-6Tp1XJsmypD4KLW4quBvmFTolydSZKVJ_va0RdefqfhfOd7kcAK4xmmKEyJ00nZsShCtECCrOwIjgimcFzdH5n3wJJjFuEUIYE0xKOgLL1b5NLmrZWih7A7_WzhvZwnojg9TJBvchk_M99A0kc7h2SfZu38FaBuV7l4IzFq5ebW-vwEUj22gn33MMXh7u1_VTtnx-XNSzZaYZwUWmbW51o1RpMJOopFppkpOcoVwa03BDmeJaWcqMVbnmJeOsULyqDFIlww2lY3Az3PUxORG1S1ZvtO97q5PAHHNWnqDbAdoF_7a3MYmt34f--JcgDKOKVgzjIzUdKB18jME2YhdcJ8NBYCROZsXJrPgxeyxUQ-HdtfbwDy1m89Xit_sJJFZ8Fw</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Sun, Weiwei</creator><creator>Wang, Hsiu‐Wen</creator><creator>Vlcek, Lukas</creator><creator>Peng, Jing</creator><creator>Brady, Alexander B.</creator><creator>Osti, Naresh C.</creator><creator>Mamontov, Eugene</creator><creator>Tyagi, Madhusudan</creator><creator>Nanda, Jagjit</creator><creator>Greenbaum, Steven G.</creator><creator>Kent, Paul R. C.</creator><creator>Naguib, Michael</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2802-4122</orcidid><orcidid>https://orcid.org/0000-0002-0213-2299</orcidid><orcidid>https://orcid.org/0000-0002-0997-6179</orcidid><orcidid>https://orcid.org/0000-0002-6875-0057</orcidid><orcidid>https://orcid.org/0000-0003-4782-7702</orcidid><orcidid>https://orcid.org/0000-0002-5684-2675</orcidid><orcidid>https://orcid.org/0000-0001-5497-5274</orcidid><orcidid>https://orcid.org/0000-0002-4952-9023</orcidid><orcidid>https://orcid.org/0000-0002-5535-0660</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000209976179</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><orcidid>https://orcid.org/0000000249529023</orcidid><orcidid>https://orcid.org/0000000256842675</orcidid><orcidid>https://orcid.org/0000000255350660</orcidid><orcidid>https://orcid.org/0000000202132299</orcidid><orcidid>https://orcid.org/0000000154975274</orcidid><orcidid>https://orcid.org/0000000347827702</orcidid><orcidid>https://orcid.org/0000000228024122</orcidid></search><sort><creationdate>20200601</creationdate><title>Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene</title><author>Sun, Weiwei ; Wang, Hsiu‐Wen ; Vlcek, Lukas ; Peng, Jing ; Brady, Alexander B. ; Osti, Naresh C. ; Mamontov, Eugene ; Tyagi, Madhusudan ; Nanda, Jagjit ; Greenbaum, Steven G. ; Kent, Paul R. C. ; Naguib, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4217-ce5ecfbb8d14a083cbc2525405addf6d34b6cbe34deb5c684647b699d0b841f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Density functional theory</topic><topic>Elastic scattering</topic><topic>Electron paramagnetic resonance</topic><topic>Electron spin</topic><topic>Electronic structure</topic><topic>Energy storage</topic><topic>Fluorine</topic><topic>Hydroxyl groups</topic><topic>Interlayers</topic><topic>Molecular dynamics</topic><topic>Molecular structure</topic><topic>multiscale modeling</topic><topic>MXenes</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>residual Al ions</topic><topic>Resonance scattering</topic><topic>Solid solutions</topic><topic>solid‐solution MXenes</topic><topic>Spin resonance</topic><topic>Structural models</topic><topic>Titanium carbonitride</topic><topic>total and quasi‐elastic neutron scattering</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Weiwei</creatorcontrib><creatorcontrib>Wang, Hsiu‐Wen</creatorcontrib><creatorcontrib>Vlcek, Lukas</creatorcontrib><creatorcontrib>Peng, Jing</creatorcontrib><creatorcontrib>Brady, Alexander B.</creatorcontrib><creatorcontrib>Osti, Naresh C.</creatorcontrib><creatorcontrib>Mamontov, Eugene</creatorcontrib><creatorcontrib>Tyagi, Madhusudan</creatorcontrib><creatorcontrib>Nanda, Jagjit</creatorcontrib><creatorcontrib>Greenbaum, Steven G.</creatorcontrib><creatorcontrib>Kent, Paul R. C.</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Weiwei</au><au>Wang, Hsiu‐Wen</au><au>Vlcek, Lukas</au><au>Peng, Jing</au><au>Brady, Alexander B.</au><au>Osti, Naresh C.</au><au>Mamontov, Eugene</au><au>Tyagi, Madhusudan</au><au>Nanda, Jagjit</au><au>Greenbaum, Steven G.</au><au>Kent, Paul R. C.</au><au>Naguib, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene</atitle><jtitle>Advanced materials interfaces</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>7</volume><issue>11</issue><epage>n/a</epage><issn>2196-7350</issn><eissn>2196-7350</eissn><abstract>A comprehensive study on the prototype solid solution phase carbonitride MXene Ti3CN is conducted using nuclear magnetic resonance, electron spin resonance, total and quasi‐elastic neutron scattering, combined with density functional theory‐based electronic structure and molecular dynamic calculations. The combination of experiment and theory lead toward rational atomic structural models of Ti3CN. The remnant Al ions from the etching process significantly tune the interlayer spacing, distinct from the more typical MXene, Ti3C2, prepared similarly. Neutron scattering indicates the surface terminations of Ti3CN display high oxygen and fluorine concentrations and rather low hydroxyl and hydrogen concentrations. Calculations show that the structure including both the residual Al ions and mixed surface terminations give the best agreement with the measurements. The water molecules in Ti3CN are highly immobile, in strong contrast to those in Ti3C2. The analysis of the electronic structure suggests that the nitride MXene displays higher conductivity than the carbides. The absence of hydroxyl groups in terminations, the solid‐solution in the anion sites, the remnants within layers, and immobile water altogether make the carbonitrides a unique series in the MXene family, implying a further exploration of their exotic properties and applications in energy storage. The ideal structural model of MXenes is commonly used without consideration of the complexity of surface and intercalant. Based on multiscale modeling and multimodal characterizations, it is found that the remnant Al ions and the composition of surface groups in Ti3CN are very unique in contrast to Ti3C2, and they result in larger d‐spacing of Ti3CN and lower water mobility compared to Ti3C2.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/admi.201902207</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2802-4122</orcidid><orcidid>https://orcid.org/0000-0002-0213-2299</orcidid><orcidid>https://orcid.org/0000-0002-0997-6179</orcidid><orcidid>https://orcid.org/0000-0002-6875-0057</orcidid><orcidid>https://orcid.org/0000-0003-4782-7702</orcidid><orcidid>https://orcid.org/0000-0002-5684-2675</orcidid><orcidid>https://orcid.org/0000-0001-5497-5274</orcidid><orcidid>https://orcid.org/0000-0002-4952-9023</orcidid><orcidid>https://orcid.org/0000-0002-5535-0660</orcidid><orcidid>https://orcid.org/0000-0001-5539-4017</orcidid><orcidid>https://orcid.org/0000000155394017</orcidid><orcidid>https://orcid.org/0000000209976179</orcidid><orcidid>https://orcid.org/0000000268750057</orcidid><orcidid>https://orcid.org/0000000249529023</orcidid><orcidid>https://orcid.org/0000000256842675</orcidid><orcidid>https://orcid.org/0000000255350660</orcidid><orcidid>https://orcid.org/0000000202132299</orcidid><orcidid>https://orcid.org/0000000154975274</orcidid><orcidid>https://orcid.org/0000000347827702</orcidid><orcidid>https://orcid.org/0000000228024122</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2196-7350
ispartof Advanced materials interfaces, 2020-06, Vol.7 (11), p.n/a
issn 2196-7350
2196-7350
language eng
recordid cdi_osti_scitechconnect_1616483
source Wiley Journals
subjects Density functional theory
Elastic scattering
Electron paramagnetic resonance
Electron spin
Electronic structure
Energy storage
Fluorine
Hydroxyl groups
Interlayers
Molecular dynamics
Molecular structure
multiscale modeling
MXenes
Neutron scattering
Neutrons
NMR
Nuclear magnetic resonance
residual Al ions
Resonance scattering
Solid solutions
solid‐solution MXenes
Spin resonance
Structural models
Titanium carbonitride
total and quasi‐elastic neutron scattering
Water chemistry
title Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A19%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20and%20Multimodal%20Characterization%20of%202D%20Titanium%20Carbonitride%20MXene&rft.jtitle=Advanced%20materials%20interfaces&rft.au=Sun,%20Weiwei&rft.date=2020-06-01&rft.volume=7&rft.issue=11&rft.epage=n/a&rft.issn=2196-7350&rft.eissn=2196-7350&rft_id=info:doi/10.1002/admi.201902207&rft_dat=%3Cproquest_osti_%3E2410939411%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2410939411&rft_id=info:pmid/&rfr_iscdi=true