Structure and Interface Design Enable Stable Li-Rich Cathode
Li-rich layered-oxide cathodes have the highest theoretical energy density among all the intercalated cathodes, which have attracted intense interests for high-energy Li-ion batteries. However, O3-structured layered-oxide cathodes suffer from a low initial Coulombic efficiency (CE), severe voltage f...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-05, Vol.142 (19), p.8918-8927 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8927 |
---|---|
container_issue | 19 |
container_start_page | 8918 |
container_title | Journal of the American Chemical Society |
container_volume | 142 |
creator | Cui, Chunyu Fan, Xiulin Zhou, Xiuquan Chen, Ji Wang, Qinchao Ma, Lu Yang, Chongyin Hu, Enyuan Yang, Xiao-Qing Wang, Chunsheng |
description | Li-rich layered-oxide cathodes have the highest theoretical energy density among all the intercalated cathodes, which have attracted intense interests for high-energy Li-ion batteries. However, O3-structured layered-oxide cathodes suffer from a low initial Coulombic efficiency (CE), severe voltage fade, and poor cycling stability because of the continuous oxygen release, structural rearrangements due to irreversible transition-metal migration, and serious side reactions between the delithiated cathode and electrolyte. Herein, we report that these challenges are migrated by using a stable O2-structured Li1.2Ni0.13Co0.13Mn0.54O2 (O2-LR-NCM) and all-fluorinated electrolyte. The O2-LR-NCM can restrict the transition metals migrating into the Li layer, and the in situ formed fluorinated cathode–electrolyte interphase (CEI) on the surface of the O2-LR-NCM from the decomposition of all-fluorinated electrolyte during initial cycles effectively restrains the structure transition, suppresses the O2 release, and thereby safeguards the transition metal redox couples, enabling a highly reversible and stable oxygen redox reaction. O2-LR-NCM in all fluorinated electrolytes achieves a high initial CE of 99.82%, a cycling CE of >99.9%, a high reversible capacity of 278 mAh/g, and high capacity retention of 83.3% after 100 cycles. The synergic design of electrolyte and cathode structure represents a promising direction to stabilize high-energy cathodes. |
doi_str_mv | 10.1021/jacs.0c02302 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1616447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393575214</sourcerecordid><originalsourceid>FETCH-LOGICAL-a389t-1d62ec5a08c9705b40fdf32b5a0eab119b9e75a4f669c423b9918c343fe116723</originalsourceid><addsrcrecordid>eNptkDFPwzAQRi0EoqWwMaOIiYEUn-04scSCSoFKlZAozJbjXGiqNCm2M_DvSWmBhenTnd59Jz1CzoGOgTK4WRnrx9RSxik7IENIGI0TYPKQDCmlLE4zyQfkxPtVPwqWwTEZcMZBpVIMye0iuM6GzmFkmiKaNQFdaSxG9-ir9yaaNiavMVqE75hX8Utll9HEhGVb4Ck5Kk3t8WyfI_L2MH2dPMXz58fZ5G4eG56pEEMhGdrE0MyqlCa5oGVRcpb3GzQ5gMoVpokRpZTKCsZzpSCzXPASAWTK-Ihc7npbHyrtbRXQLm3bNGiDBglSiLSHrnbQxrUfHfqg15W3WNemwbbzmnHFkzRhIHr0eoda13rvsNQbV62N-9RA9Vaq3krVe6k9frFv7vI1Fr_wj8W_19urVdu5prfxf9cXTXZ8_Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393575214</pqid></control><display><type>article</type><title>Structure and Interface Design Enable Stable Li-Rich Cathode</title><source>ACS Publications</source><creator>Cui, Chunyu ; Fan, Xiulin ; Zhou, Xiuquan ; Chen, Ji ; Wang, Qinchao ; Ma, Lu ; Yang, Chongyin ; Hu, Enyuan ; Yang, Xiao-Qing ; Wang, Chunsheng</creator><creatorcontrib>Cui, Chunyu ; Fan, Xiulin ; Zhou, Xiuquan ; Chen, Ji ; Wang, Qinchao ; Ma, Lu ; Yang, Chongyin ; Hu, Enyuan ; Yang, Xiao-Qing ; Wang, Chunsheng ; Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><description>Li-rich layered-oxide cathodes have the highest theoretical energy density among all the intercalated cathodes, which have attracted intense interests for high-energy Li-ion batteries. However, O3-structured layered-oxide cathodes suffer from a low initial Coulombic efficiency (CE), severe voltage fade, and poor cycling stability because of the continuous oxygen release, structural rearrangements due to irreversible transition-metal migration, and serious side reactions between the delithiated cathode and electrolyte. Herein, we report that these challenges are migrated by using a stable O2-structured Li1.2Ni0.13Co0.13Mn0.54O2 (O2-LR-NCM) and all-fluorinated electrolyte. The O2-LR-NCM can restrict the transition metals migrating into the Li layer, and the in situ formed fluorinated cathode–electrolyte interphase (CEI) on the surface of the O2-LR-NCM from the decomposition of all-fluorinated electrolyte during initial cycles effectively restrains the structure transition, suppresses the O2 release, and thereby safeguards the transition metal redox couples, enabling a highly reversible and stable oxygen redox reaction. O2-LR-NCM in all fluorinated electrolytes achieves a high initial CE of 99.82%, a cycling CE of >99.9%, a high reversible capacity of 278 mAh/g, and high capacity retention of 83.3% after 100 cycles. The synergic design of electrolyte and cathode structure represents a promising direction to stabilize high-energy cathodes.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c02302</identifier><identifier>PMID: 32319764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE ; fluorinated CEI ; high initial Columbic efficiency ; Li-rich cathodes ; little voltage fade ; O2-structure</subject><ispartof>Journal of the American Chemical Society, 2020-05, Vol.142 (19), p.8918-8927</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a389t-1d62ec5a08c9705b40fdf32b5a0eab119b9e75a4f669c423b9918c343fe116723</citedby><cites>FETCH-LOGICAL-a389t-1d62ec5a08c9705b40fdf32b5a0eab119b9e75a4f669c423b9918c343fe116723</cites><orcidid>0000-0001-7294-480X ; 0000-0002-1361-3880 ; 0000-0002-3625-3478 ; 0000-0002-8626-6381 ; 0000-0002-1881-4534 ; 0000-0002-7127-3087 ; 0000-0003-0326-8304 ; 0000000213613880 ; 0000000286266381 ; 0000000303268304 ; 0000000218814534 ; 0000000236253478 ; 0000000271273087 ; 000000017294480X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c02302$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c02302$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32319764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1616447$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Chunyu</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Zhou, Xiuquan</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Wang, Qinchao</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Yang, Chongyin</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><title>Structure and Interface Design Enable Stable Li-Rich Cathode</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Li-rich layered-oxide cathodes have the highest theoretical energy density among all the intercalated cathodes, which have attracted intense interests for high-energy Li-ion batteries. However, O3-structured layered-oxide cathodes suffer from a low initial Coulombic efficiency (CE), severe voltage fade, and poor cycling stability because of the continuous oxygen release, structural rearrangements due to irreversible transition-metal migration, and serious side reactions between the delithiated cathode and electrolyte. Herein, we report that these challenges are migrated by using a stable O2-structured Li1.2Ni0.13Co0.13Mn0.54O2 (O2-LR-NCM) and all-fluorinated electrolyte. The O2-LR-NCM can restrict the transition metals migrating into the Li layer, and the in situ formed fluorinated cathode–electrolyte interphase (CEI) on the surface of the O2-LR-NCM from the decomposition of all-fluorinated electrolyte during initial cycles effectively restrains the structure transition, suppresses the O2 release, and thereby safeguards the transition metal redox couples, enabling a highly reversible and stable oxygen redox reaction. O2-LR-NCM in all fluorinated electrolytes achieves a high initial CE of 99.82%, a cycling CE of >99.9%, a high reversible capacity of 278 mAh/g, and high capacity retention of 83.3% after 100 cycles. The synergic design of electrolyte and cathode structure represents a promising direction to stabilize high-energy cathodes.</description><subject>ENERGY STORAGE</subject><subject>fluorinated CEI</subject><subject>high initial Columbic efficiency</subject><subject>Li-rich cathodes</subject><subject>little voltage fade</subject><subject>O2-structure</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptkDFPwzAQRi0EoqWwMaOIiYEUn-04scSCSoFKlZAozJbjXGiqNCm2M_DvSWmBhenTnd59Jz1CzoGOgTK4WRnrx9RSxik7IENIGI0TYPKQDCmlLE4zyQfkxPtVPwqWwTEZcMZBpVIMye0iuM6GzmFkmiKaNQFdaSxG9-ir9yaaNiavMVqE75hX8Utll9HEhGVb4Ck5Kk3t8WyfI_L2MH2dPMXz58fZ5G4eG56pEEMhGdrE0MyqlCa5oGVRcpb3GzQ5gMoVpokRpZTKCsZzpSCzXPASAWTK-Ihc7npbHyrtbRXQLm3bNGiDBglSiLSHrnbQxrUfHfqg15W3WNemwbbzmnHFkzRhIHr0eoda13rvsNQbV62N-9RA9Vaq3krVe6k9frFv7vI1Fr_wj8W_19urVdu5prfxf9cXTXZ8_Q</recordid><startdate>20200513</startdate><enddate>20200513</enddate><creator>Cui, Chunyu</creator><creator>Fan, Xiulin</creator><creator>Zhou, Xiuquan</creator><creator>Chen, Ji</creator><creator>Wang, Qinchao</creator><creator>Ma, Lu</creator><creator>Yang, Chongyin</creator><creator>Hu, Enyuan</creator><creator>Yang, Xiao-Qing</creator><creator>Wang, Chunsheng</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7294-480X</orcidid><orcidid>https://orcid.org/0000-0002-1361-3880</orcidid><orcidid>https://orcid.org/0000-0002-3625-3478</orcidid><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000-0002-1881-4534</orcidid><orcidid>https://orcid.org/0000-0002-7127-3087</orcidid><orcidid>https://orcid.org/0000-0003-0326-8304</orcidid><orcidid>https://orcid.org/0000000213613880</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid><orcidid>https://orcid.org/0000000303268304</orcidid><orcidid>https://orcid.org/0000000218814534</orcidid><orcidid>https://orcid.org/0000000236253478</orcidid><orcidid>https://orcid.org/0000000271273087</orcidid><orcidid>https://orcid.org/000000017294480X</orcidid></search><sort><creationdate>20200513</creationdate><title>Structure and Interface Design Enable Stable Li-Rich Cathode</title><author>Cui, Chunyu ; Fan, Xiulin ; Zhou, Xiuquan ; Chen, Ji ; Wang, Qinchao ; Ma, Lu ; Yang, Chongyin ; Hu, Enyuan ; Yang, Xiao-Qing ; Wang, Chunsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a389t-1d62ec5a08c9705b40fdf32b5a0eab119b9e75a4f669c423b9918c343fe116723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ENERGY STORAGE</topic><topic>fluorinated CEI</topic><topic>high initial Columbic efficiency</topic><topic>Li-rich cathodes</topic><topic>little voltage fade</topic><topic>O2-structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Chunyu</creatorcontrib><creatorcontrib>Fan, Xiulin</creatorcontrib><creatorcontrib>Zhou, Xiuquan</creatorcontrib><creatorcontrib>Chen, Ji</creatorcontrib><creatorcontrib>Wang, Qinchao</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Yang, Chongyin</creatorcontrib><creatorcontrib>Hu, Enyuan</creatorcontrib><creatorcontrib>Yang, Xiao-Qing</creatorcontrib><creatorcontrib>Wang, Chunsheng</creatorcontrib><creatorcontrib>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Chunyu</au><au>Fan, Xiulin</au><au>Zhou, Xiuquan</au><au>Chen, Ji</au><au>Wang, Qinchao</au><au>Ma, Lu</au><au>Yang, Chongyin</au><au>Hu, Enyuan</au><au>Yang, Xiao-Qing</au><au>Wang, Chunsheng</au><aucorp>Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II (NSLS-II)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Interface Design Enable Stable Li-Rich Cathode</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-05-13</date><risdate>2020</risdate><volume>142</volume><issue>19</issue><spage>8918</spage><epage>8927</epage><pages>8918-8927</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Li-rich layered-oxide cathodes have the highest theoretical energy density among all the intercalated cathodes, which have attracted intense interests for high-energy Li-ion batteries. However, O3-structured layered-oxide cathodes suffer from a low initial Coulombic efficiency (CE), severe voltage fade, and poor cycling stability because of the continuous oxygen release, structural rearrangements due to irreversible transition-metal migration, and serious side reactions between the delithiated cathode and electrolyte. Herein, we report that these challenges are migrated by using a stable O2-structured Li1.2Ni0.13Co0.13Mn0.54O2 (O2-LR-NCM) and all-fluorinated electrolyte. The O2-LR-NCM can restrict the transition metals migrating into the Li layer, and the in situ formed fluorinated cathode–electrolyte interphase (CEI) on the surface of the O2-LR-NCM from the decomposition of all-fluorinated electrolyte during initial cycles effectively restrains the structure transition, suppresses the O2 release, and thereby safeguards the transition metal redox couples, enabling a highly reversible and stable oxygen redox reaction. O2-LR-NCM in all fluorinated electrolytes achieves a high initial CE of 99.82%, a cycling CE of >99.9%, a high reversible capacity of 278 mAh/g, and high capacity retention of 83.3% after 100 cycles. The synergic design of electrolyte and cathode structure represents a promising direction to stabilize high-energy cathodes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32319764</pmid><doi>10.1021/jacs.0c02302</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7294-480X</orcidid><orcidid>https://orcid.org/0000-0002-1361-3880</orcidid><orcidid>https://orcid.org/0000-0002-3625-3478</orcidid><orcidid>https://orcid.org/0000-0002-8626-6381</orcidid><orcidid>https://orcid.org/0000-0002-1881-4534</orcidid><orcidid>https://orcid.org/0000-0002-7127-3087</orcidid><orcidid>https://orcid.org/0000-0003-0326-8304</orcidid><orcidid>https://orcid.org/0000000213613880</orcidid><orcidid>https://orcid.org/0000000286266381</orcidid><orcidid>https://orcid.org/0000000303268304</orcidid><orcidid>https://orcid.org/0000000218814534</orcidid><orcidid>https://orcid.org/0000000236253478</orcidid><orcidid>https://orcid.org/0000000271273087</orcidid><orcidid>https://orcid.org/000000017294480X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2020-05, Vol.142 (19), p.8918-8927 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1616447 |
source | ACS Publications |
subjects | ENERGY STORAGE fluorinated CEI high initial Columbic efficiency Li-rich cathodes little voltage fade O2-structure |
title | Structure and Interface Design Enable Stable Li-Rich Cathode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Interface%20Design%20Enable%20Stable%20Li-Rich%20Cathode&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Cui,%20Chunyu&rft.aucorp=Brookhaven%20National%20Lab.%20(BNL),%20Upton,%20NY%20(United%20States).%20National%20Synchrotron%20Light%20Source%20II%20(NSLS-II)&rft.date=2020-05-13&rft.volume=142&rft.issue=19&rft.spage=8918&rft.epage=8927&rft.pages=8918-8927&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c02302&rft_dat=%3Cproquest_osti_%3E2393575214%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2393575214&rft_id=info:pmid/32319764&rfr_iscdi=true |