Corrosion Susceptibility of Cr–Mo Steels and Ferritic Stainless Steels in Biomass-Derived Pyrolysis Oil Constituents

To better understand and evaluate the corrosion performance of candidate structural steels and ferritic stainless steels for production, transport, and storage of biomass pyrolysis oils, corrosion studies were conducted in selected organic constituents of bio-oils, including catechol, formic acid, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2020-05, Vol.34 (5), p.6220-6228
Hauptverfasser: Jun, Jiheon, Frith, Matthew G, Connatser, Raynella M, Keiser, James R, Brady, Michael P, Lewis, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6228
container_issue 5
container_start_page 6220
container_title Energy & fuels
container_volume 34
creator Jun, Jiheon
Frith, Matthew G
Connatser, Raynella M
Keiser, James R
Brady, Michael P
Lewis, Samuel
description To better understand and evaluate the corrosion performance of candidate structural steels and ferritic stainless steels for production, transport, and storage of biomass pyrolysis oils, corrosion studies were conducted in selected organic constituents of bio-oils, including catechol, formic acid, and their mixtures as well as lactobionic acid, using electrochemical impedance spectroscopy. R 2, the resistance against corrosion reaction, was obtained by fitting measured impedance spectra into an equivalent circuit. The values of R 2 were then used to assess corrosion resistance of the steels in each organic constituent and mixture. Type 410 and 430 stainless steels were resistant to corrosion in all tested organic constituents, while 2.25Cr-1Mo steel was not. 9Cr-1Mo steel was corrosion resistant in catechol but not in the other mixtures that contained organic acids. On the basis of the results of this work, it is suggested that the corrosion resistance against organic acids is attributed to formation of a Cr-rich passive film that requires stainless steels with critical Cr levels in excess of approximately 11 wt %. In catechol-only solution, lower levels of Cr intermediate between that of 2.25Cr-1Mo steel and 9Cr-1Mo steel appeared sufficient.
doi_str_mv 10.1021/acs.energyfuels.9b04406
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1615825</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>h52812959</sourcerecordid><originalsourceid>FETCH-LOGICAL-a377t-e82d791bc45d3a93834a0c81c17fdb64fb4c72b3040f745e4a530552c0a90a9a3</originalsourceid><addsrcrecordid>eNqFkN1KxDAQhYMouP48g8H7rpMm6c-lVlcFRWH1uqRpqpGaSCYr9M538A19ErOsgnfCwMDMOWeYj5AjBnMGOTtRGufGmfA0DSsz4rzuQAgotsiMyRwyCXm9TWZQVWUGRS52yR7iCwAUvJIz8t74EDxa7-hyhdq8RdvZ0caJ-oE24evj89bTZTQpmSrX04UJwUar00xZNxrE36119Mz6V4WYnZtg301P76fgxwkt0js70sY7jDaujIt4QHYGNaI5_On75HFx8dBcZTd3l9fN6U2meFnGzFR5X9as00L2XNW84kKBrphm5dB3hRg6ocu84yBgKIU0QkkOUuYaVJ1K8X1yvMn16XSL2kajn7V3zujYsoLJKpdJVG5EOpHAYIb2LdhXFaaWQbtm3CbG7R_G7Q_j5OQb51rw4lfBpWf-dX0DG56Jew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Corrosion Susceptibility of Cr–Mo Steels and Ferritic Stainless Steels in Biomass-Derived Pyrolysis Oil Constituents</title><source>ACS Publications</source><creator>Jun, Jiheon ; Frith, Matthew G ; Connatser, Raynella M ; Keiser, James R ; Brady, Michael P ; Lewis, Samuel</creator><creatorcontrib>Jun, Jiheon ; Frith, Matthew G ; Connatser, Raynella M ; Keiser, James R ; Brady, Michael P ; Lewis, Samuel ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>To better understand and evaluate the corrosion performance of candidate structural steels and ferritic stainless steels for production, transport, and storage of biomass pyrolysis oils, corrosion studies were conducted in selected organic constituents of bio-oils, including catechol, formic acid, and their mixtures as well as lactobionic acid, using electrochemical impedance spectroscopy. R 2, the resistance against corrosion reaction, was obtained by fitting measured impedance spectra into an equivalent circuit. The values of R 2 were then used to assess corrosion resistance of the steels in each organic constituent and mixture. Type 410 and 430 stainless steels were resistant to corrosion in all tested organic constituents, while 2.25Cr-1Mo steel was not. 9Cr-1Mo steel was corrosion resistant in catechol but not in the other mixtures that contained organic acids. On the basis of the results of this work, it is suggested that the corrosion resistance against organic acids is attributed to formation of a Cr-rich passive film that requires stainless steels with critical Cr levels in excess of approximately 11 wt %. In catechol-only solution, lower levels of Cr intermediate between that of 2.25Cr-1Mo steel and 9Cr-1Mo steel appeared sufficient.</description><identifier>ISSN: 0887-0624</identifier><identifier>EISSN: 1520-5029</identifier><identifier>DOI: 10.1021/acs.energyfuels.9b04406</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aromatic compounds ; bio-oil storage ; biomass pyrolysis oil ; corrosion ; EIS ; Electrical properties ; Electrochemistry ; Hydrocarbons ; MATERIALS SCIENCE ; Oxidation ; stainless steels</subject><ispartof>Energy &amp; fuels, 2020-05, Vol.34 (5), p.6220-6228</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a377t-e82d791bc45d3a93834a0c81c17fdb64fb4c72b3040f745e4a530552c0a90a9a3</citedby><cites>FETCH-LOGICAL-a377t-e82d791bc45d3a93834a0c81c17fdb64fb4c72b3040f745e4a530552c0a90a9a3</cites><orcidid>0000-0001-9500-5637 ; 0000-0003-1338-4747 ; 0000-0002-9169-7434 ; 0000000255817718 ; 0000000347187776 ; 0000000211951974 ; 0000000313384747 ; 0000000195005637 ; 0000000291697434</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.energyfuels.9b04406$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.9b04406$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1615825$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jun, Jiheon</creatorcontrib><creatorcontrib>Frith, Matthew G</creatorcontrib><creatorcontrib>Connatser, Raynella M</creatorcontrib><creatorcontrib>Keiser, James R</creatorcontrib><creatorcontrib>Brady, Michael P</creatorcontrib><creatorcontrib>Lewis, Samuel</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Corrosion Susceptibility of Cr–Mo Steels and Ferritic Stainless Steels in Biomass-Derived Pyrolysis Oil Constituents</title><title>Energy &amp; fuels</title><addtitle>Energy Fuels</addtitle><description>To better understand and evaluate the corrosion performance of candidate structural steels and ferritic stainless steels for production, transport, and storage of biomass pyrolysis oils, corrosion studies were conducted in selected organic constituents of bio-oils, including catechol, formic acid, and their mixtures as well as lactobionic acid, using electrochemical impedance spectroscopy. R 2, the resistance against corrosion reaction, was obtained by fitting measured impedance spectra into an equivalent circuit. The values of R 2 were then used to assess corrosion resistance of the steels in each organic constituent and mixture. Type 410 and 430 stainless steels were resistant to corrosion in all tested organic constituents, while 2.25Cr-1Mo steel was not. 9Cr-1Mo steel was corrosion resistant in catechol but not in the other mixtures that contained organic acids. On the basis of the results of this work, it is suggested that the corrosion resistance against organic acids is attributed to formation of a Cr-rich passive film that requires stainless steels with critical Cr levels in excess of approximately 11 wt %. In catechol-only solution, lower levels of Cr intermediate between that of 2.25Cr-1Mo steel and 9Cr-1Mo steel appeared sufficient.</description><subject>Aromatic compounds</subject><subject>bio-oil storage</subject><subject>biomass pyrolysis oil</subject><subject>corrosion</subject><subject>EIS</subject><subject>Electrical properties</subject><subject>Electrochemistry</subject><subject>Hydrocarbons</subject><subject>MATERIALS SCIENCE</subject><subject>Oxidation</subject><subject>stainless steels</subject><issn>0887-0624</issn><issn>1520-5029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkN1KxDAQhYMouP48g8H7rpMm6c-lVlcFRWH1uqRpqpGaSCYr9M538A19ErOsgnfCwMDMOWeYj5AjBnMGOTtRGufGmfA0DSsz4rzuQAgotsiMyRwyCXm9TWZQVWUGRS52yR7iCwAUvJIz8t74EDxa7-hyhdq8RdvZ0caJ-oE24evj89bTZTQpmSrX04UJwUar00xZNxrE36119Mz6V4WYnZtg301P76fgxwkt0js70sY7jDaujIt4QHYGNaI5_On75HFx8dBcZTd3l9fN6U2meFnGzFR5X9as00L2XNW84kKBrphm5dB3hRg6ocu84yBgKIU0QkkOUuYaVJ1K8X1yvMn16XSL2kajn7V3zujYsoLJKpdJVG5EOpHAYIb2LdhXFaaWQbtm3CbG7R_G7Q_j5OQb51rw4lfBpWf-dX0DG56Jew</recordid><startdate>20200521</startdate><enddate>20200521</enddate><creator>Jun, Jiheon</creator><creator>Frith, Matthew G</creator><creator>Connatser, Raynella M</creator><creator>Keiser, James R</creator><creator>Brady, Michael P</creator><creator>Lewis, Samuel</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9500-5637</orcidid><orcidid>https://orcid.org/0000-0003-1338-4747</orcidid><orcidid>https://orcid.org/0000-0002-9169-7434</orcidid><orcidid>https://orcid.org/0000000255817718</orcidid><orcidid>https://orcid.org/0000000347187776</orcidid><orcidid>https://orcid.org/0000000211951974</orcidid><orcidid>https://orcid.org/0000000313384747</orcidid><orcidid>https://orcid.org/0000000195005637</orcidid><orcidid>https://orcid.org/0000000291697434</orcidid></search><sort><creationdate>20200521</creationdate><title>Corrosion Susceptibility of Cr–Mo Steels and Ferritic Stainless Steels in Biomass-Derived Pyrolysis Oil Constituents</title><author>Jun, Jiheon ; Frith, Matthew G ; Connatser, Raynella M ; Keiser, James R ; Brady, Michael P ; Lewis, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a377t-e82d791bc45d3a93834a0c81c17fdb64fb4c72b3040f745e4a530552c0a90a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aromatic compounds</topic><topic>bio-oil storage</topic><topic>biomass pyrolysis oil</topic><topic>corrosion</topic><topic>EIS</topic><topic>Electrical properties</topic><topic>Electrochemistry</topic><topic>Hydrocarbons</topic><topic>MATERIALS SCIENCE</topic><topic>Oxidation</topic><topic>stainless steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jun, Jiheon</creatorcontrib><creatorcontrib>Frith, Matthew G</creatorcontrib><creatorcontrib>Connatser, Raynella M</creatorcontrib><creatorcontrib>Keiser, James R</creatorcontrib><creatorcontrib>Brady, Michael P</creatorcontrib><creatorcontrib>Lewis, Samuel</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jun, Jiheon</au><au>Frith, Matthew G</au><au>Connatser, Raynella M</au><au>Keiser, James R</au><au>Brady, Michael P</au><au>Lewis, Samuel</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion Susceptibility of Cr–Mo Steels and Ferritic Stainless Steels in Biomass-Derived Pyrolysis Oil Constituents</atitle><jtitle>Energy &amp; fuels</jtitle><addtitle>Energy Fuels</addtitle><date>2020-05-21</date><risdate>2020</risdate><volume>34</volume><issue>5</issue><spage>6220</spage><epage>6228</epage><pages>6220-6228</pages><issn>0887-0624</issn><eissn>1520-5029</eissn><abstract>To better understand and evaluate the corrosion performance of candidate structural steels and ferritic stainless steels for production, transport, and storage of biomass pyrolysis oils, corrosion studies were conducted in selected organic constituents of bio-oils, including catechol, formic acid, and their mixtures as well as lactobionic acid, using electrochemical impedance spectroscopy. R 2, the resistance against corrosion reaction, was obtained by fitting measured impedance spectra into an equivalent circuit. The values of R 2 were then used to assess corrosion resistance of the steels in each organic constituent and mixture. Type 410 and 430 stainless steels were resistant to corrosion in all tested organic constituents, while 2.25Cr-1Mo steel was not. 9Cr-1Mo steel was corrosion resistant in catechol but not in the other mixtures that contained organic acids. On the basis of the results of this work, it is suggested that the corrosion resistance against organic acids is attributed to formation of a Cr-rich passive film that requires stainless steels with critical Cr levels in excess of approximately 11 wt %. In catechol-only solution, lower levels of Cr intermediate between that of 2.25Cr-1Mo steel and 9Cr-1Mo steel appeared sufficient.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.energyfuels.9b04406</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9500-5637</orcidid><orcidid>https://orcid.org/0000-0003-1338-4747</orcidid><orcidid>https://orcid.org/0000-0002-9169-7434</orcidid><orcidid>https://orcid.org/0000000255817718</orcidid><orcidid>https://orcid.org/0000000347187776</orcidid><orcidid>https://orcid.org/0000000211951974</orcidid><orcidid>https://orcid.org/0000000313384747</orcidid><orcidid>https://orcid.org/0000000195005637</orcidid><orcidid>https://orcid.org/0000000291697434</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-0624
ispartof Energy & fuels, 2020-05, Vol.34 (5), p.6220-6228
issn 0887-0624
1520-5029
language eng
recordid cdi_osti_scitechconnect_1615825
source ACS Publications
subjects Aromatic compounds
bio-oil storage
biomass pyrolysis oil
corrosion
EIS
Electrical properties
Electrochemistry
Hydrocarbons
MATERIALS SCIENCE
Oxidation
stainless steels
title Corrosion Susceptibility of Cr–Mo Steels and Ferritic Stainless Steels in Biomass-Derived Pyrolysis Oil Constituents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20Susceptibility%20of%20Cr%E2%80%93Mo%20Steels%20and%20Ferritic%20Stainless%20Steels%20in%20Biomass-Derived%20Pyrolysis%20Oil%20Constituents&rft.jtitle=Energy%20&%20fuels&rft.au=Jun,%20Jiheon&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-05-21&rft.volume=34&rft.issue=5&rft.spage=6220&rft.epage=6228&rft.pages=6220-6228&rft.issn=0887-0624&rft.eissn=1520-5029&rft_id=info:doi/10.1021/acs.energyfuels.9b04406&rft_dat=%3Cacs_osti_%3Eh52812959%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true