Electron ionization via dark matter-electron scattering and the Migdal effect
There are currently several existing and proposed experiments designed to probe sub-GeV dark matter (DM) using electron ionization in various materials. The projected signal rates for these experiments assume that this ionization yield arises only from DM scattering directly off electron targets, ig...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2020-04, Vol.101 (7), p.1, Article 076014 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | Physical review. D |
container_volume | 101 |
creator | Baxter, Daniel Kahn, Yonatan Krnjaic, Gordan |
description | There are currently several existing and proposed experiments designed to probe sub-GeV dark matter (DM) using electron ionization in various materials. The projected signal rates for these experiments assume that this ionization yield arises only from DM scattering directly off electron targets, ignoring secondary ionization contributions from DM scattering off nuclear targets. We investigate the validity of this assumption and show that if sub-GeV DM couples with comparable strength to both protons and electrons, as would be the case for a dark photon mediator, the ionization signal from atomic scattering via the Migdal effect scales with the atomic number Z and 3-momentum transfer q as Z(2)q(2). The result is that the Migdal effect is always subdominant to electron scattering when the mediator is light, but that Migdal-induced ionization can dominate over electron scattering for heavy mediators and DM masses in the hundreds of MeV range. We put these two ionization processes on identical theoretical footing, address some theoretical uncertainties in the choice of atomic wave functions used to compute rates, and discuss the implications for DM scenarios where the Migdal process dominates, including for XENON10, XENON100, and the recent XENON1T results on light DM scattering. |
doi_str_mv | 10.1103/PhysRevD.101.076014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1615426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2416998228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-b1838dd25181c0c5ed59ca1ff13c693e7034133028bd3d4cd2a35cd5ca9d9d83</originalsourceid><addsrcrecordid>eNqNkE1PAjEQhjdGEwnyC7xs9GgWO-1-9WgQPxKIxnBvStuFIrTYFgz-egsrnD3NZPK8kzdPklwD6gMgcv8-3_kPtX3sA4I-qkoE-VnSwXmFMoQwPT_tgC6TnvcLFNcS0Qqgk4yHSyWCsybV1ugfHuJIt5qnkrvPdMVDUC5TR8aLw0GbWcqNTMNcpWM9k3yZqqaJzFVy0fClV72_2U0mT8PJ4CUbvT2_Dh5GmcihCNkUalJLiQuoQSBRKFlQwaFpgIiSElUhkgMhCNdTSWQuJOakELIQnEoqa9JNbtq31gfNvNBBibmwxsQKDEooclxG6LaF1s5-bZQPbGE3zsRaDOdQUlpjvH9FWko4671TDVs7veJuxwCxvV521BsPwFq9MVW3qW81tU0soIxQp2T0W-Cyorjcm8YDHQ5aB3ZjQoze_T9KfgHaMY9m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2416998228</pqid></control><display><type>article</type><title>Electron ionization via dark matter-electron scattering and the Migdal effect</title><source>American Physical Society Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Baxter, Daniel ; Kahn, Yonatan ; Krnjaic, Gordan</creator><creatorcontrib>Baxter, Daniel ; Kahn, Yonatan ; Krnjaic, Gordan ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><description>There are currently several existing and proposed experiments designed to probe sub-GeV dark matter (DM) using electron ionization in various materials. The projected signal rates for these experiments assume that this ionization yield arises only from DM scattering directly off electron targets, ignoring secondary ionization contributions from DM scattering off nuclear targets. We investigate the validity of this assumption and show that if sub-GeV DM couples with comparable strength to both protons and electrons, as would be the case for a dark photon mediator, the ionization signal from atomic scattering via the Migdal effect scales with the atomic number Z and 3-momentum transfer q as Z(2)q(2). The result is that the Migdal effect is always subdominant to electron scattering when the mediator is light, but that Migdal-induced ionization can dominate over electron scattering for heavy mediators and DM masses in the hundreds of MeV range. We put these two ionization processes on identical theoretical footing, address some theoretical uncertainties in the choice of atomic wave functions used to compute rates, and discuss the implications for DM scenarios where the Migdal process dominates, including for XENON10, XENON100, and the recent XENON1T results on light DM scattering.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.101.076014</identifier><language>eng</language><publisher>COLLEGE PK: Amer Physical Soc</publisher><subject>Astronomy & Astrophysics ; ASTRONOMY AND ASTROPHYSICS ; Atomic properties ; Dark matter ; Electrons ; Ionization ; Momentum transfer ; Physical Sciences ; Physics ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Physics, Particles & Fields ; Scattering ; Science & Technology ; Wave functions</subject><ispartof>Physical review. D, 2020-04, Vol.101 (7), p.1, Article 076014</ispartof><rights>Copyright American Physical Society Apr 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>71</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000526792600012</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c415t-b1838dd25181c0c5ed59ca1ff13c693e7034133028bd3d4cd2a35cd5ca9d9d83</citedby><cites>FETCH-LOGICAL-c415t-b1838dd25181c0c5ed59ca1ff13c693e7034133028bd3d4cd2a35cd5ca9d9d83</cites><orcidid>0000-0001-7420-9577 ; 0000-0003-0662-3535 ; 0000-0002-9379-1838 ; 0000000293791838 ; 0000000174209577 ; 0000000306623535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27929,27930,28253</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1615426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baxter, Daniel</creatorcontrib><creatorcontrib>Kahn, Yonatan</creatorcontrib><creatorcontrib>Krnjaic, Gordan</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><title>Electron ionization via dark matter-electron scattering and the Migdal effect</title><title>Physical review. D</title><addtitle>PHYS REV D</addtitle><description>There are currently several existing and proposed experiments designed to probe sub-GeV dark matter (DM) using electron ionization in various materials. The projected signal rates for these experiments assume that this ionization yield arises only from DM scattering directly off electron targets, ignoring secondary ionization contributions from DM scattering off nuclear targets. We investigate the validity of this assumption and show that if sub-GeV DM couples with comparable strength to both protons and electrons, as would be the case for a dark photon mediator, the ionization signal from atomic scattering via the Migdal effect scales with the atomic number Z and 3-momentum transfer q as Z(2)q(2). The result is that the Migdal effect is always subdominant to electron scattering when the mediator is light, but that Migdal-induced ionization can dominate over electron scattering for heavy mediators and DM masses in the hundreds of MeV range. We put these two ionization processes on identical theoretical footing, address some theoretical uncertainties in the choice of atomic wave functions used to compute rates, and discuss the implications for DM scenarios where the Migdal process dominates, including for XENON10, XENON100, and the recent XENON1T results on light DM scattering.</description><subject>Astronomy & Astrophysics</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Atomic properties</subject><subject>Dark matter</subject><subject>Electrons</subject><subject>Ionization</subject><subject>Momentum transfer</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Physics, Particles & Fields</subject><subject>Scattering</subject><subject>Science & Technology</subject><subject>Wave functions</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><recordid>eNqNkE1PAjEQhjdGEwnyC7xs9GgWO-1-9WgQPxKIxnBvStuFIrTYFgz-egsrnD3NZPK8kzdPklwD6gMgcv8-3_kPtX3sA4I-qkoE-VnSwXmFMoQwPT_tgC6TnvcLFNcS0Qqgk4yHSyWCsybV1ugfHuJIt5qnkrvPdMVDUC5TR8aLw0GbWcqNTMNcpWM9k3yZqqaJzFVy0fClV72_2U0mT8PJ4CUbvT2_Dh5GmcihCNkUalJLiQuoQSBRKFlQwaFpgIiSElUhkgMhCNdTSWQuJOakELIQnEoqa9JNbtq31gfNvNBBibmwxsQKDEooclxG6LaF1s5-bZQPbGE3zsRaDOdQUlpjvH9FWko4671TDVs7veJuxwCxvV521BsPwFq9MVW3qW81tU0soIxQp2T0W-Cyorjcm8YDHQ5aB3ZjQoze_T9KfgHaMY9m</recordid><startdate>20200420</startdate><enddate>20200420</enddate><creator>Baxter, Daniel</creator><creator>Kahn, Yonatan</creator><creator>Krnjaic, Gordan</creator><general>Amer Physical Soc</general><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7420-9577</orcidid><orcidid>https://orcid.org/0000-0003-0662-3535</orcidid><orcidid>https://orcid.org/0000-0002-9379-1838</orcidid><orcidid>https://orcid.org/0000000293791838</orcidid><orcidid>https://orcid.org/0000000174209577</orcidid><orcidid>https://orcid.org/0000000306623535</orcidid></search><sort><creationdate>20200420</creationdate><title>Electron ionization via dark matter-electron scattering and the Migdal effect</title><author>Baxter, Daniel ; Kahn, Yonatan ; Krnjaic, Gordan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-b1838dd25181c0c5ed59ca1ff13c693e7034133028bd3d4cd2a35cd5ca9d9d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomy & Astrophysics</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Atomic properties</topic><topic>Dark matter</topic><topic>Electrons</topic><topic>Ionization</topic><topic>Momentum transfer</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Physics, Particles & Fields</topic><topic>Scattering</topic><topic>Science & Technology</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baxter, Daniel</creatorcontrib><creatorcontrib>Kahn, Yonatan</creatorcontrib><creatorcontrib>Krnjaic, Gordan</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baxter, Daniel</au><au>Kahn, Yonatan</au><au>Krnjaic, Gordan</au><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron ionization via dark matter-electron scattering and the Migdal effect</atitle><jtitle>Physical review. D</jtitle><stitle>PHYS REV D</stitle><date>2020-04-20</date><risdate>2020</risdate><volume>101</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>076014</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>There are currently several existing and proposed experiments designed to probe sub-GeV dark matter (DM) using electron ionization in various materials. The projected signal rates for these experiments assume that this ionization yield arises only from DM scattering directly off electron targets, ignoring secondary ionization contributions from DM scattering off nuclear targets. We investigate the validity of this assumption and show that if sub-GeV DM couples with comparable strength to both protons and electrons, as would be the case for a dark photon mediator, the ionization signal from atomic scattering via the Migdal effect scales with the atomic number Z and 3-momentum transfer q as Z(2)q(2). The result is that the Migdal effect is always subdominant to electron scattering when the mediator is light, but that Migdal-induced ionization can dominate over electron scattering for heavy mediators and DM masses in the hundreds of MeV range. We put these two ionization processes on identical theoretical footing, address some theoretical uncertainties in the choice of atomic wave functions used to compute rates, and discuss the implications for DM scenarios where the Migdal process dominates, including for XENON10, XENON100, and the recent XENON1T results on light DM scattering.</abstract><cop>COLLEGE PK</cop><pub>Amer Physical Soc</pub><doi>10.1103/PhysRevD.101.076014</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7420-9577</orcidid><orcidid>https://orcid.org/0000-0003-0662-3535</orcidid><orcidid>https://orcid.org/0000-0002-9379-1838</orcidid><orcidid>https://orcid.org/0000000293791838</orcidid><orcidid>https://orcid.org/0000000174209577</orcidid><orcidid>https://orcid.org/0000000306623535</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2020-04, Vol.101 (7), p.1, Article 076014 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1615426 |
source | American Physical Society Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Astronomy & Astrophysics ASTRONOMY AND ASTROPHYSICS Atomic properties Dark matter Electrons Ionization Momentum transfer Physical Sciences Physics PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Physics, Particles & Fields Scattering Science & Technology Wave functions |
title | Electron ionization via dark matter-electron scattering and the Migdal effect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20ionization%20via%20dark%20matter-electron%20scattering%20and%20the%20Migdal%20effect&rft.jtitle=Physical%20review.%20D&rft.au=Baxter,%20Daniel&rft.aucorp=Fermi%20National%20Accelerator%20Laboratory%20(FNAL),%20Batavia,%20IL%20(United%20States)&rft.date=2020-04-20&rft.volume=101&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=076014&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.101.076014&rft_dat=%3Cproquest_osti_%3E2416998228%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2416998228&rft_id=info:pmid/&rfr_iscdi=true |