Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy

Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2020-06, Vol.19 (6), p.637-643
Hauptverfasser: Briggs, Natalie, Bersch, Brian, Wang, Yuanxi, Jiang, Jue, Koch, Roland J., Nayir, Nadire, Wang, Ke, Kolmer, Marek, Ko, Wonhee, De La Fuente Duran, Ana, Subramanian, Shruti, Dong, Chengye, Shallenberger, Jeffrey, Fu, Mingming, Zou, Qiang, Chuang, Ya-Wen, Gai, Zheng, Li, An-Ping, Bostwick, Aaron, Jozwiak, Chris, Chang, Cui-Zu, Rotenberg, Eli, Zhu, Jun, van Duin, Adri C. T., Crespi, Vincent, Robinson, Joshua A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 6
container_start_page 637
container_title Nature materials
container_volume 19
creator Briggs, Natalie
Bersch, Brian
Wang, Yuanxi
Jiang, Jue
Koch, Roland J.
Nayir, Nadire
Wang, Ke
Kolmer, Marek
Ko, Wonhee
De La Fuente Duran, Ana
Subramanian, Shruti
Dong, Chengye
Shallenberger, Jeffrey
Fu, Mingming
Zou, Qiang
Chuang, Ya-Wen
Gai, Zheng
Li, An-Ping
Bostwick, Aaron
Jozwiak, Chris
Chang, Cui-Zu
Rotenberg, Eli
Zhu, Jun
van Duin, Adri C. T.
Crespi, Vincent
Robinson, Joshua A.
description Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.
doi_str_mv 10.1038/s41563-020-0631-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1615216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407308301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-1141700ef3bf00fbebf7664f6c1ae9a967ce1278d0a36724e91835eadac830363</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVISdK0H6CXYtJLL25mJFuyjyH0H4T20tCjkOVR1sGWt5K27H77ynibQqE9zcD85s0bHmOvEN4hiOY6VlhLUQKHEqTAcn_CLrBSsqykhNNjj8j5OXse4yMAx7qWZ-xc5EZhixfsy02ap8GacTwUaTP4YmNGV_40vugpFN-NGWMxUVoKedON1BfdobCzd4OniXwqNpQozLQdktkfXrBnLrP08lgv2f2H999uP5V3Xz9-vr25K20teMqeKlQA5ETnAFxHnVNSVk5aNNSaVipLyFXTgxFS8YpabERNpje2ESCkuGRXq-4c06CjHRLZTXblySaNEmuOC_R2hbZh_rGjmPQ0REvjaDzNu6i5UJLzLIwZffMX-jjvgs8vaF6pqm2gQf5_CpSAbG7RwpWyYY4xkNPbMEwmHDSCXnLTa24656aX3PQ-77w-Ku-6ifqnjd9BZYCvQMwj_0Dhz-l_q_4COYKg8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407308301</pqid></control><display><type>article</type><title>Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Briggs, Natalie ; Bersch, Brian ; Wang, Yuanxi ; Jiang, Jue ; Koch, Roland J. ; Nayir, Nadire ; Wang, Ke ; Kolmer, Marek ; Ko, Wonhee ; De La Fuente Duran, Ana ; Subramanian, Shruti ; Dong, Chengye ; Shallenberger, Jeffrey ; Fu, Mingming ; Zou, Qiang ; Chuang, Ya-Wen ; Gai, Zheng ; Li, An-Ping ; Bostwick, Aaron ; Jozwiak, Chris ; Chang, Cui-Zu ; Rotenberg, Eli ; Zhu, Jun ; van Duin, Adri C. T. ; Crespi, Vincent ; Robinson, Joshua A.</creator><creatorcontrib>Briggs, Natalie ; Bersch, Brian ; Wang, Yuanxi ; Jiang, Jue ; Koch, Roland J. ; Nayir, Nadire ; Wang, Ke ; Kolmer, Marek ; Ko, Wonhee ; De La Fuente Duran, Ana ; Subramanian, Shruti ; Dong, Chengye ; Shallenberger, Jeffrey ; Fu, Mingming ; Zou, Qiang ; Chuang, Ya-Wen ; Gai, Zheng ; Li, An-Ping ; Bostwick, Aaron ; Jozwiak, Chris ; Chang, Cui-Zu ; Rotenberg, Eli ; Zhu, Jun ; van Duin, Adri C. T. ; Crespi, Vincent ; Robinson, Joshua A. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-0631-x</identifier><identifier>PMID: 32157191</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 140/146 ; 639/301/119/1003 ; 639/301/357/1018 ; Biomaterials ; Bonding strength ; Chemistry and Materials Science ; Condensed Matter Physics ; Environmental degradation ; Epitaxy ; Fermi surfaces ; Free electrons ; Gallium ; Graphene ; Heterostructures ; MATERIALS SCIENCE ; Metals ; Nanotechnology ; Optical and Electronic Materials ; Optoelectronic devices ; Silicon ; Silicon carbide ; Single crystals ; Superconducting devices ; Superconducting properties and materials ; Superconductivity ; Two-dimensional materials</subject><ispartof>Nature materials, 2020-06, Vol.19 (6), p.637-643</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-1141700ef3bf00fbebf7664f6c1ae9a967ce1278d0a36724e91835eadac830363</citedby><cites>FETCH-LOGICAL-c532t-1141700ef3bf00fbebf7664f6c1ae9a967ce1278d0a36724e91835eadac830363</cites><orcidid>0000-0002-3979-8844 ; 0000-0003-3515-2955 ; 0000-0002-6786-9697 ; 0000-0003-0059-9263 ; 0000-0002-6099-4559 ; 0000-0002-0659-1134 ; 0000-0002-0980-3753 ; 0000-0003-4400-7493 ; 0000-0002-1513-7187 ; 0000-0001-5748-8463 ; 0000000209126895 ; 0000000239798844 ; 0000000260994559 ; 0000000267869697 ; 0000000157488463 ; 0000000344007493 ; 0000000206591134 ; 0000000215137187 ; 0000000335152955 ; 0000000300599263 ; 0000000261551485 ; 0000000209803753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-0631-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-0631-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32157191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1615216$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Briggs, Natalie</creatorcontrib><creatorcontrib>Bersch, Brian</creatorcontrib><creatorcontrib>Wang, Yuanxi</creatorcontrib><creatorcontrib>Jiang, Jue</creatorcontrib><creatorcontrib>Koch, Roland J.</creatorcontrib><creatorcontrib>Nayir, Nadire</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Kolmer, Marek</creatorcontrib><creatorcontrib>Ko, Wonhee</creatorcontrib><creatorcontrib>De La Fuente Duran, Ana</creatorcontrib><creatorcontrib>Subramanian, Shruti</creatorcontrib><creatorcontrib>Dong, Chengye</creatorcontrib><creatorcontrib>Shallenberger, Jeffrey</creatorcontrib><creatorcontrib>Fu, Mingming</creatorcontrib><creatorcontrib>Zou, Qiang</creatorcontrib><creatorcontrib>Chuang, Ya-Wen</creatorcontrib><creatorcontrib>Gai, Zheng</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Chang, Cui-Zu</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Crespi, Vincent</creatorcontrib><creatorcontrib>Robinson, Joshua A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.</description><subject>140/133</subject><subject>140/146</subject><subject>639/301/119/1003</subject><subject>639/301/357/1018</subject><subject>Biomaterials</subject><subject>Bonding strength</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Environmental degradation</subject><subject>Epitaxy</subject><subject>Fermi surfaces</subject><subject>Free electrons</subject><subject>Gallium</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>MATERIALS SCIENCE</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronic devices</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Single crystals</subject><subject>Superconducting devices</subject><subject>Superconducting properties and materials</subject><subject>Superconductivity</subject><subject>Two-dimensional materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9r3DAQxUVISdK0H6CXYtJLL25mJFuyjyH0H4T20tCjkOVR1sGWt5K27H77ynibQqE9zcD85s0bHmOvEN4hiOY6VlhLUQKHEqTAcn_CLrBSsqykhNNjj8j5OXse4yMAx7qWZ-xc5EZhixfsy02ap8GacTwUaTP4YmNGV_40vugpFN-NGWMxUVoKedON1BfdobCzd4OniXwqNpQozLQdktkfXrBnLrP08lgv2f2H999uP5V3Xz9-vr25K20teMqeKlQA5ETnAFxHnVNSVk5aNNSaVipLyFXTgxFS8YpabERNpje2ESCkuGRXq-4c06CjHRLZTXblySaNEmuOC_R2hbZh_rGjmPQ0REvjaDzNu6i5UJLzLIwZffMX-jjvgs8vaF6pqm2gQf5_CpSAbG7RwpWyYY4xkNPbMEwmHDSCXnLTa24656aX3PQ-77w-Ku-6ifqnjd9BZYCvQMwj_0Dhz-l_q_4COYKg8w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Briggs, Natalie</creator><creator>Bersch, Brian</creator><creator>Wang, Yuanxi</creator><creator>Jiang, Jue</creator><creator>Koch, Roland J.</creator><creator>Nayir, Nadire</creator><creator>Wang, Ke</creator><creator>Kolmer, Marek</creator><creator>Ko, Wonhee</creator><creator>De La Fuente Duran, Ana</creator><creator>Subramanian, Shruti</creator><creator>Dong, Chengye</creator><creator>Shallenberger, Jeffrey</creator><creator>Fu, Mingming</creator><creator>Zou, Qiang</creator><creator>Chuang, Ya-Wen</creator><creator>Gai, Zheng</creator><creator>Li, An-Ping</creator><creator>Bostwick, Aaron</creator><creator>Jozwiak, Chris</creator><creator>Chang, Cui-Zu</creator><creator>Rotenberg, Eli</creator><creator>Zhu, Jun</creator><creator>van Duin, Adri C. T.</creator><creator>Crespi, Vincent</creator><creator>Robinson, Joshua A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3979-8844</orcidid><orcidid>https://orcid.org/0000-0003-3515-2955</orcidid><orcidid>https://orcid.org/0000-0002-6786-9697</orcidid><orcidid>https://orcid.org/0000-0003-0059-9263</orcidid><orcidid>https://orcid.org/0000-0002-6099-4559</orcidid><orcidid>https://orcid.org/0000-0002-0659-1134</orcidid><orcidid>https://orcid.org/0000-0002-0980-3753</orcidid><orcidid>https://orcid.org/0000-0003-4400-7493</orcidid><orcidid>https://orcid.org/0000-0002-1513-7187</orcidid><orcidid>https://orcid.org/0000-0001-5748-8463</orcidid><orcidid>https://orcid.org/0000000209126895</orcidid><orcidid>https://orcid.org/0000000239798844</orcidid><orcidid>https://orcid.org/0000000260994559</orcidid><orcidid>https://orcid.org/0000000267869697</orcidid><orcidid>https://orcid.org/0000000157488463</orcidid><orcidid>https://orcid.org/0000000344007493</orcidid><orcidid>https://orcid.org/0000000206591134</orcidid><orcidid>https://orcid.org/0000000215137187</orcidid><orcidid>https://orcid.org/0000000335152955</orcidid><orcidid>https://orcid.org/0000000300599263</orcidid><orcidid>https://orcid.org/0000000261551485</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid></search><sort><creationdate>20200601</creationdate><title>Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy</title><author>Briggs, Natalie ; Bersch, Brian ; Wang, Yuanxi ; Jiang, Jue ; Koch, Roland J. ; Nayir, Nadire ; Wang, Ke ; Kolmer, Marek ; Ko, Wonhee ; De La Fuente Duran, Ana ; Subramanian, Shruti ; Dong, Chengye ; Shallenberger, Jeffrey ; Fu, Mingming ; Zou, Qiang ; Chuang, Ya-Wen ; Gai, Zheng ; Li, An-Ping ; Bostwick, Aaron ; Jozwiak, Chris ; Chang, Cui-Zu ; Rotenberg, Eli ; Zhu, Jun ; van Duin, Adri C. T. ; Crespi, Vincent ; Robinson, Joshua A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-1141700ef3bf00fbebf7664f6c1ae9a967ce1278d0a36724e91835eadac830363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/133</topic><topic>140/146</topic><topic>639/301/119/1003</topic><topic>639/301/357/1018</topic><topic>Biomaterials</topic><topic>Bonding strength</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Environmental degradation</topic><topic>Epitaxy</topic><topic>Fermi surfaces</topic><topic>Free electrons</topic><topic>Gallium</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>MATERIALS SCIENCE</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronic devices</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Single crystals</topic><topic>Superconducting devices</topic><topic>Superconducting properties and materials</topic><topic>Superconductivity</topic><topic>Two-dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briggs, Natalie</creatorcontrib><creatorcontrib>Bersch, Brian</creatorcontrib><creatorcontrib>Wang, Yuanxi</creatorcontrib><creatorcontrib>Jiang, Jue</creatorcontrib><creatorcontrib>Koch, Roland J.</creatorcontrib><creatorcontrib>Nayir, Nadire</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Kolmer, Marek</creatorcontrib><creatorcontrib>Ko, Wonhee</creatorcontrib><creatorcontrib>De La Fuente Duran, Ana</creatorcontrib><creatorcontrib>Subramanian, Shruti</creatorcontrib><creatorcontrib>Dong, Chengye</creatorcontrib><creatorcontrib>Shallenberger, Jeffrey</creatorcontrib><creatorcontrib>Fu, Mingming</creatorcontrib><creatorcontrib>Zou, Qiang</creatorcontrib><creatorcontrib>Chuang, Ya-Wen</creatorcontrib><creatorcontrib>Gai, Zheng</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Chang, Cui-Zu</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Crespi, Vincent</creatorcontrib><creatorcontrib>Robinson, Joshua A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briggs, Natalie</au><au>Bersch, Brian</au><au>Wang, Yuanxi</au><au>Jiang, Jue</au><au>Koch, Roland J.</au><au>Nayir, Nadire</au><au>Wang, Ke</au><au>Kolmer, Marek</au><au>Ko, Wonhee</au><au>De La Fuente Duran, Ana</au><au>Subramanian, Shruti</au><au>Dong, Chengye</au><au>Shallenberger, Jeffrey</au><au>Fu, Mingming</au><au>Zou, Qiang</au><au>Chuang, Ya-Wen</au><au>Gai, Zheng</au><au>Li, An-Ping</au><au>Bostwick, Aaron</au><au>Jozwiak, Chris</au><au>Chang, Cui-Zu</au><au>Rotenberg, Eli</au><au>Zhu, Jun</au><au>van Duin, Adri C. T.</au><au>Crespi, Vincent</au><au>Robinson, Joshua A.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>19</volume><issue>6</issue><spage>637</spage><epage>643</epage><pages>637-643</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer. Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32157191</pmid><doi>10.1038/s41563-020-0631-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3979-8844</orcidid><orcidid>https://orcid.org/0000-0003-3515-2955</orcidid><orcidid>https://orcid.org/0000-0002-6786-9697</orcidid><orcidid>https://orcid.org/0000-0003-0059-9263</orcidid><orcidid>https://orcid.org/0000-0002-6099-4559</orcidid><orcidid>https://orcid.org/0000-0002-0659-1134</orcidid><orcidid>https://orcid.org/0000-0002-0980-3753</orcidid><orcidid>https://orcid.org/0000-0003-4400-7493</orcidid><orcidid>https://orcid.org/0000-0002-1513-7187</orcidid><orcidid>https://orcid.org/0000-0001-5748-8463</orcidid><orcidid>https://orcid.org/0000000209126895</orcidid><orcidid>https://orcid.org/0000000239798844</orcidid><orcidid>https://orcid.org/0000000260994559</orcidid><orcidid>https://orcid.org/0000000267869697</orcidid><orcidid>https://orcid.org/0000000157488463</orcidid><orcidid>https://orcid.org/0000000344007493</orcidid><orcidid>https://orcid.org/0000000206591134</orcidid><orcidid>https://orcid.org/0000000215137187</orcidid><orcidid>https://orcid.org/0000000335152955</orcidid><orcidid>https://orcid.org/0000000300599263</orcidid><orcidid>https://orcid.org/0000000261551485</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2020-06, Vol.19 (6), p.637-643
issn 1476-1122
1476-4660
language eng
recordid cdi_osti_scitechconnect_1615216
source SpringerLink Journals; Nature Journals Online
subjects 140/133
140/146
639/301/119/1003
639/301/357/1018
Biomaterials
Bonding strength
Chemistry and Materials Science
Condensed Matter Physics
Environmental degradation
Epitaxy
Fermi surfaces
Free electrons
Gallium
Graphene
Heterostructures
MATERIALS SCIENCE
Metals
Nanotechnology
Optical and Electronic Materials
Optoelectronic devices
Silicon
Silicon carbide
Single crystals
Superconducting devices
Superconducting properties and materials
Superconductivity
Two-dimensional materials
title Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20thin%20half-van%20der%20Waals%20metals%20enabled%20by%20confinement%20heteroepitaxy&rft.jtitle=Nature%20materials&rft.au=Briggs,%20Natalie&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Advanced%20Light%20Source%20(ALS)&rft.date=2020-06-01&rft.volume=19&rft.issue=6&rft.spage=637&rft.epage=643&rft.pages=637-643&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-0631-x&rft_dat=%3Cproquest_osti_%3E2407308301%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407308301&rft_id=info:pmid/32157191&rfr_iscdi=true