Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy
Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon...
Gespeichert in:
Veröffentlicht in: | Nature materials 2020-06, Vol.19 (6), p.637-643 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 643 |
---|---|
container_issue | 6 |
container_start_page | 637 |
container_title | Nature materials |
container_volume | 19 |
creator | Briggs, Natalie Bersch, Brian Wang, Yuanxi Jiang, Jue Koch, Roland J. Nayir, Nadire Wang, Ke Kolmer, Marek Ko, Wonhee De La Fuente Duran, Ana Subramanian, Shruti Dong, Chengye Shallenberger, Jeffrey Fu, Mingming Zou, Qiang Chuang, Ya-Wen Gai, Zheng Li, An-Ping Bostwick, Aaron Jozwiak, Chris Chang, Cui-Zu Rotenberg, Eli Zhu, Jun van Duin, Adri C. T. Crespi, Vincent Robinson, Joshua A. |
description | Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer.
Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties. |
doi_str_mv | 10.1038/s41563-020-0631-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1615216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2407308301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c532t-1141700ef3bf00fbebf7664f6c1ae9a967ce1278d0a36724e91835eadac830363</originalsourceid><addsrcrecordid>eNp9kU9r3DAQxUVISdK0H6CXYtJLL25mJFuyjyH0H4T20tCjkOVR1sGWt5K27H77ynibQqE9zcD85s0bHmOvEN4hiOY6VlhLUQKHEqTAcn_CLrBSsqykhNNjj8j5OXse4yMAx7qWZ-xc5EZhixfsy02ap8GacTwUaTP4YmNGV_40vugpFN-NGWMxUVoKedON1BfdobCzd4OniXwqNpQozLQdktkfXrBnLrP08lgv2f2H999uP5V3Xz9-vr25K20teMqeKlQA5ETnAFxHnVNSVk5aNNSaVipLyFXTgxFS8YpabERNpje2ESCkuGRXq-4c06CjHRLZTXblySaNEmuOC_R2hbZh_rGjmPQ0REvjaDzNu6i5UJLzLIwZffMX-jjvgs8vaF6pqm2gQf5_CpSAbG7RwpWyYY4xkNPbMEwmHDSCXnLTa24656aX3PQ-77w-Ku-6ifqnjd9BZYCvQMwj_0Dhz-l_q_4COYKg8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2407308301</pqid></control><display><type>article</type><title>Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Briggs, Natalie ; Bersch, Brian ; Wang, Yuanxi ; Jiang, Jue ; Koch, Roland J. ; Nayir, Nadire ; Wang, Ke ; Kolmer, Marek ; Ko, Wonhee ; De La Fuente Duran, Ana ; Subramanian, Shruti ; Dong, Chengye ; Shallenberger, Jeffrey ; Fu, Mingming ; Zou, Qiang ; Chuang, Ya-Wen ; Gai, Zheng ; Li, An-Ping ; Bostwick, Aaron ; Jozwiak, Chris ; Chang, Cui-Zu ; Rotenberg, Eli ; Zhu, Jun ; van Duin, Adri C. T. ; Crespi, Vincent ; Robinson, Joshua A.</creator><creatorcontrib>Briggs, Natalie ; Bersch, Brian ; Wang, Yuanxi ; Jiang, Jue ; Koch, Roland J. ; Nayir, Nadire ; Wang, Ke ; Kolmer, Marek ; Ko, Wonhee ; De La Fuente Duran, Ana ; Subramanian, Shruti ; Dong, Chengye ; Shallenberger, Jeffrey ; Fu, Mingming ; Zou, Qiang ; Chuang, Ya-Wen ; Gai, Zheng ; Li, An-Ping ; Bostwick, Aaron ; Jozwiak, Chris ; Chang, Cui-Zu ; Rotenberg, Eli ; Zhu, Jun ; van Duin, Adri C. T. ; Crespi, Vincent ; Robinson, Joshua A. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><description>Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer.
Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/s41563-020-0631-x</identifier><identifier>PMID: 32157191</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 140/146 ; 639/301/119/1003 ; 639/301/357/1018 ; Biomaterials ; Bonding strength ; Chemistry and Materials Science ; Condensed Matter Physics ; Environmental degradation ; Epitaxy ; Fermi surfaces ; Free electrons ; Gallium ; Graphene ; Heterostructures ; MATERIALS SCIENCE ; Metals ; Nanotechnology ; Optical and Electronic Materials ; Optoelectronic devices ; Silicon ; Silicon carbide ; Single crystals ; Superconducting devices ; Superconducting properties and materials ; Superconductivity ; Two-dimensional materials</subject><ispartof>Nature materials, 2020-06, Vol.19 (6), p.637-643</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c532t-1141700ef3bf00fbebf7664f6c1ae9a967ce1278d0a36724e91835eadac830363</citedby><cites>FETCH-LOGICAL-c532t-1141700ef3bf00fbebf7664f6c1ae9a967ce1278d0a36724e91835eadac830363</cites><orcidid>0000-0002-3979-8844 ; 0000-0003-3515-2955 ; 0000-0002-6786-9697 ; 0000-0003-0059-9263 ; 0000-0002-6099-4559 ; 0000-0002-0659-1134 ; 0000-0002-0980-3753 ; 0000-0003-4400-7493 ; 0000-0002-1513-7187 ; 0000-0001-5748-8463 ; 0000000209126895 ; 0000000239798844 ; 0000000260994559 ; 0000000267869697 ; 0000000157488463 ; 0000000344007493 ; 0000000206591134 ; 0000000215137187 ; 0000000335152955 ; 0000000300599263 ; 0000000261551485 ; 0000000209803753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41563-020-0631-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41563-020-0631-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32157191$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1615216$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Briggs, Natalie</creatorcontrib><creatorcontrib>Bersch, Brian</creatorcontrib><creatorcontrib>Wang, Yuanxi</creatorcontrib><creatorcontrib>Jiang, Jue</creatorcontrib><creatorcontrib>Koch, Roland J.</creatorcontrib><creatorcontrib>Nayir, Nadire</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Kolmer, Marek</creatorcontrib><creatorcontrib>Ko, Wonhee</creatorcontrib><creatorcontrib>De La Fuente Duran, Ana</creatorcontrib><creatorcontrib>Subramanian, Shruti</creatorcontrib><creatorcontrib>Dong, Chengye</creatorcontrib><creatorcontrib>Shallenberger, Jeffrey</creatorcontrib><creatorcontrib>Fu, Mingming</creatorcontrib><creatorcontrib>Zou, Qiang</creatorcontrib><creatorcontrib>Chuang, Ya-Wen</creatorcontrib><creatorcontrib>Gai, Zheng</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Chang, Cui-Zu</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Crespi, Vincent</creatorcontrib><creatorcontrib>Robinson, Joshua A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><title>Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy</title><title>Nature materials</title><addtitle>Nat. Mater</addtitle><addtitle>Nat Mater</addtitle><description>Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer.
Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.</description><subject>140/133</subject><subject>140/146</subject><subject>639/301/119/1003</subject><subject>639/301/357/1018</subject><subject>Biomaterials</subject><subject>Bonding strength</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Environmental degradation</subject><subject>Epitaxy</subject><subject>Fermi surfaces</subject><subject>Free electrons</subject><subject>Gallium</subject><subject>Graphene</subject><subject>Heterostructures</subject><subject>MATERIALS SCIENCE</subject><subject>Metals</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optoelectronic devices</subject><subject>Silicon</subject><subject>Silicon carbide</subject><subject>Single crystals</subject><subject>Superconducting devices</subject><subject>Superconducting properties and materials</subject><subject>Superconductivity</subject><subject>Two-dimensional materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9r3DAQxUVISdK0H6CXYtJLL25mJFuyjyH0H4T20tCjkOVR1sGWt5K27H77ynibQqE9zcD85s0bHmOvEN4hiOY6VlhLUQKHEqTAcn_CLrBSsqykhNNjj8j5OXse4yMAx7qWZ-xc5EZhixfsy02ap8GacTwUaTP4YmNGV_40vugpFN-NGWMxUVoKedON1BfdobCzd4OniXwqNpQozLQdktkfXrBnLrP08lgv2f2H999uP5V3Xz9-vr25K20teMqeKlQA5ETnAFxHnVNSVk5aNNSaVipLyFXTgxFS8YpabERNpje2ESCkuGRXq-4c06CjHRLZTXblySaNEmuOC_R2hbZh_rGjmPQ0REvjaDzNu6i5UJLzLIwZffMX-jjvgs8vaF6pqm2gQf5_CpSAbG7RwpWyYY4xkNPbMEwmHDSCXnLTa24656aX3PQ-77w-Ku-6ifqnjd9BZYCvQMwj_0Dhz-l_q_4COYKg8w</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Briggs, Natalie</creator><creator>Bersch, Brian</creator><creator>Wang, Yuanxi</creator><creator>Jiang, Jue</creator><creator>Koch, Roland J.</creator><creator>Nayir, Nadire</creator><creator>Wang, Ke</creator><creator>Kolmer, Marek</creator><creator>Ko, Wonhee</creator><creator>De La Fuente Duran, Ana</creator><creator>Subramanian, Shruti</creator><creator>Dong, Chengye</creator><creator>Shallenberger, Jeffrey</creator><creator>Fu, Mingming</creator><creator>Zou, Qiang</creator><creator>Chuang, Ya-Wen</creator><creator>Gai, Zheng</creator><creator>Li, An-Ping</creator><creator>Bostwick, Aaron</creator><creator>Jozwiak, Chris</creator><creator>Chang, Cui-Zu</creator><creator>Rotenberg, Eli</creator><creator>Zhu, Jun</creator><creator>van Duin, Adri C. T.</creator><creator>Crespi, Vincent</creator><creator>Robinson, Joshua A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Springer Nature - Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3979-8844</orcidid><orcidid>https://orcid.org/0000-0003-3515-2955</orcidid><orcidid>https://orcid.org/0000-0002-6786-9697</orcidid><orcidid>https://orcid.org/0000-0003-0059-9263</orcidid><orcidid>https://orcid.org/0000-0002-6099-4559</orcidid><orcidid>https://orcid.org/0000-0002-0659-1134</orcidid><orcidid>https://orcid.org/0000-0002-0980-3753</orcidid><orcidid>https://orcid.org/0000-0003-4400-7493</orcidid><orcidid>https://orcid.org/0000-0002-1513-7187</orcidid><orcidid>https://orcid.org/0000-0001-5748-8463</orcidid><orcidid>https://orcid.org/0000000209126895</orcidid><orcidid>https://orcid.org/0000000239798844</orcidid><orcidid>https://orcid.org/0000000260994559</orcidid><orcidid>https://orcid.org/0000000267869697</orcidid><orcidid>https://orcid.org/0000000157488463</orcidid><orcidid>https://orcid.org/0000000344007493</orcidid><orcidid>https://orcid.org/0000000206591134</orcidid><orcidid>https://orcid.org/0000000215137187</orcidid><orcidid>https://orcid.org/0000000335152955</orcidid><orcidid>https://orcid.org/0000000300599263</orcidid><orcidid>https://orcid.org/0000000261551485</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid></search><sort><creationdate>20200601</creationdate><title>Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy</title><author>Briggs, Natalie ; Bersch, Brian ; Wang, Yuanxi ; Jiang, Jue ; Koch, Roland J. ; Nayir, Nadire ; Wang, Ke ; Kolmer, Marek ; Ko, Wonhee ; De La Fuente Duran, Ana ; Subramanian, Shruti ; Dong, Chengye ; Shallenberger, Jeffrey ; Fu, Mingming ; Zou, Qiang ; Chuang, Ya-Wen ; Gai, Zheng ; Li, An-Ping ; Bostwick, Aaron ; Jozwiak, Chris ; Chang, Cui-Zu ; Rotenberg, Eli ; Zhu, Jun ; van Duin, Adri C. T. ; Crespi, Vincent ; Robinson, Joshua A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c532t-1141700ef3bf00fbebf7664f6c1ae9a967ce1278d0a36724e91835eadac830363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>140/133</topic><topic>140/146</topic><topic>639/301/119/1003</topic><topic>639/301/357/1018</topic><topic>Biomaterials</topic><topic>Bonding strength</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Environmental degradation</topic><topic>Epitaxy</topic><topic>Fermi surfaces</topic><topic>Free electrons</topic><topic>Gallium</topic><topic>Graphene</topic><topic>Heterostructures</topic><topic>MATERIALS SCIENCE</topic><topic>Metals</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optoelectronic devices</topic><topic>Silicon</topic><topic>Silicon carbide</topic><topic>Single crystals</topic><topic>Superconducting devices</topic><topic>Superconducting properties and materials</topic><topic>Superconductivity</topic><topic>Two-dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Briggs, Natalie</creatorcontrib><creatorcontrib>Bersch, Brian</creatorcontrib><creatorcontrib>Wang, Yuanxi</creatorcontrib><creatorcontrib>Jiang, Jue</creatorcontrib><creatorcontrib>Koch, Roland J.</creatorcontrib><creatorcontrib>Nayir, Nadire</creatorcontrib><creatorcontrib>Wang, Ke</creatorcontrib><creatorcontrib>Kolmer, Marek</creatorcontrib><creatorcontrib>Ko, Wonhee</creatorcontrib><creatorcontrib>De La Fuente Duran, Ana</creatorcontrib><creatorcontrib>Subramanian, Shruti</creatorcontrib><creatorcontrib>Dong, Chengye</creatorcontrib><creatorcontrib>Shallenberger, Jeffrey</creatorcontrib><creatorcontrib>Fu, Mingming</creatorcontrib><creatorcontrib>Zou, Qiang</creatorcontrib><creatorcontrib>Chuang, Ya-Wen</creatorcontrib><creatorcontrib>Gai, Zheng</creatorcontrib><creatorcontrib>Li, An-Ping</creatorcontrib><creatorcontrib>Bostwick, Aaron</creatorcontrib><creatorcontrib>Jozwiak, Chris</creatorcontrib><creatorcontrib>Chang, Cui-Zu</creatorcontrib><creatorcontrib>Rotenberg, Eli</creatorcontrib><creatorcontrib>Zhu, Jun</creatorcontrib><creatorcontrib>van Duin, Adri C. T.</creatorcontrib><creatorcontrib>Crespi, Vincent</creatorcontrib><creatorcontrib>Robinson, Joshua A.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Briggs, Natalie</au><au>Bersch, Brian</au><au>Wang, Yuanxi</au><au>Jiang, Jue</au><au>Koch, Roland J.</au><au>Nayir, Nadire</au><au>Wang, Ke</au><au>Kolmer, Marek</au><au>Ko, Wonhee</au><au>De La Fuente Duran, Ana</au><au>Subramanian, Shruti</au><au>Dong, Chengye</au><au>Shallenberger, Jeffrey</au><au>Fu, Mingming</au><au>Zou, Qiang</au><au>Chuang, Ya-Wen</au><au>Gai, Zheng</au><au>Li, An-Ping</au><au>Bostwick, Aaron</au><au>Jozwiak, Chris</au><au>Chang, Cui-Zu</au><au>Rotenberg, Eli</au><au>Zhu, Jun</au><au>van Duin, Adri C. T.</au><au>Crespi, Vincent</au><au>Robinson, Joshua A.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy</atitle><jtitle>Nature materials</jtitle><stitle>Nat. Mater</stitle><addtitle>Nat Mater</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>19</volume><issue>6</issue><spage>637</spage><epage>643</epage><pages>637-643</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Atomically thin two-dimensional (2D) metals may be key ingredients in next-generation quantum and optoelectronic devices. However, 2D metals must be stabilized against environmental degradation and integrated into heterostructure devices at the wafer scale. The high-energy interface between silicon carbide and epitaxial graphene provides an intriguing framework for stabilizing a diverse range of 2D metals. Here we demonstrate large-area, environmentally stable, single-crystal 2D gallium, indium and tin that are stabilized at the interface of epitaxial graphene and silicon carbide. The 2D metals are covalently bonded to SiC below but present a non-bonded interface to the graphene overlayer; that is, they are ‘half van der Waals’ metals with strong internal gradients in bonding character. These non-centrosymmetric 2D metals offer compelling opportunities for superconducting devices, topological phenomena and advanced optoelectronic properties. For example, the reported 2D Ga is a superconductor that combines six strongly coupled Ga-derived electron pockets with a large nearly free-electron Fermi surface that closely approaches the Dirac points of the graphene overlayer.
Single-crystal 2D metals are stabilized at the interface between epitaxial graphene and silicon carbide, with strong internal gradients in bonding character. The confined 2D metals demonstrate compelling superconducting properties.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32157191</pmid><doi>10.1038/s41563-020-0631-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3979-8844</orcidid><orcidid>https://orcid.org/0000-0003-3515-2955</orcidid><orcidid>https://orcid.org/0000-0002-6786-9697</orcidid><orcidid>https://orcid.org/0000-0003-0059-9263</orcidid><orcidid>https://orcid.org/0000-0002-6099-4559</orcidid><orcidid>https://orcid.org/0000-0002-0659-1134</orcidid><orcidid>https://orcid.org/0000-0002-0980-3753</orcidid><orcidid>https://orcid.org/0000-0003-4400-7493</orcidid><orcidid>https://orcid.org/0000-0002-1513-7187</orcidid><orcidid>https://orcid.org/0000-0001-5748-8463</orcidid><orcidid>https://orcid.org/0000000209126895</orcidid><orcidid>https://orcid.org/0000000239798844</orcidid><orcidid>https://orcid.org/0000000260994559</orcidid><orcidid>https://orcid.org/0000000267869697</orcidid><orcidid>https://orcid.org/0000000157488463</orcidid><orcidid>https://orcid.org/0000000344007493</orcidid><orcidid>https://orcid.org/0000000206591134</orcidid><orcidid>https://orcid.org/0000000215137187</orcidid><orcidid>https://orcid.org/0000000335152955</orcidid><orcidid>https://orcid.org/0000000300599263</orcidid><orcidid>https://orcid.org/0000000261551485</orcidid><orcidid>https://orcid.org/0000000209803753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2020-06, Vol.19 (6), p.637-643 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_osti_scitechconnect_1615216 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 140/133 140/146 639/301/119/1003 639/301/357/1018 Biomaterials Bonding strength Chemistry and Materials Science Condensed Matter Physics Environmental degradation Epitaxy Fermi surfaces Free electrons Gallium Graphene Heterostructures MATERIALS SCIENCE Metals Nanotechnology Optical and Electronic Materials Optoelectronic devices Silicon Silicon carbide Single crystals Superconducting devices Superconducting properties and materials Superconductivity Two-dimensional materials |
title | Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomically%20thin%20half-van%20der%20Waals%20metals%20enabled%20by%20confinement%20heteroepitaxy&rft.jtitle=Nature%20materials&rft.au=Briggs,%20Natalie&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20Advanced%20Light%20Source%20(ALS)&rft.date=2020-06-01&rft.volume=19&rft.issue=6&rft.spage=637&rft.epage=643&rft.pages=637-643&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/s41563-020-0631-x&rft_dat=%3Cproquest_osti_%3E2407308301%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2407308301&rft_id=info:pmid/32157191&rfr_iscdi=true |