Machine learning to classify animal species in camera trap images: Applications in ecology

Abstract Motion‐activated cameras (“camera traps”) are increasingly used in ecological and management studies for remotely observing wildlife and are amongst the most powerful tools for wildlife research. However, studies involving camera traps result in millions of images that need to be analysed,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2018-11, Vol.10 (4)
Hauptverfasser: Tabak, Michael A., Norouzzadeh, Mohammad S., Wolfson, David W., Sweeney, Steven J., Vercauteren, Kurt C., Snow, Nathan P., Halseth, Joseph M., Di Salvo, Paul A., Lewis, Jesse S., White, Michael D., Teton, Ben, Beasley, James C., Schlichting, Peter E., Boughton, Raoul K., Wight, Bethany, Newkirk, Eric S., Ivan, Jacob S., Odell, Eric A., Brook, Ryan K., Lukacs, Paul M., Moeller, Anna K., Mandeville, Elizabeth G., Clune, Jeff, Miller, Ryan S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Methods in ecology and evolution
container_volume 10
creator Tabak, Michael A.
Norouzzadeh, Mohammad S.
Wolfson, David W.
Sweeney, Steven J.
Vercauteren, Kurt C.
Snow, Nathan P.
Halseth, Joseph M.
Di Salvo, Paul A.
Lewis, Jesse S.
White, Michael D.
Teton, Ben
Beasley, James C.
Schlichting, Peter E.
Boughton, Raoul K.
Wight, Bethany
Newkirk, Eric S.
Ivan, Jacob S.
Odell, Eric A.
Brook, Ryan K.
Lukacs, Paul M.
Moeller, Anna K.
Mandeville, Elizabeth G.
Clune, Jeff
Miller, Ryan S.
description Abstract Motion‐activated cameras (“camera traps”) are increasingly used in ecological and management studies for remotely observing wildlife and are amongst the most powerful tools for wildlife research. However, studies involving camera traps result in millions of images that need to be analysed, typically by visually observing each image, in order to extract data that can be used in ecological analyses. We trained machine learning models using convolutional neural networks with the ResNet‐18 architecture and 3,367,383 images to automatically classify wildlife species from camera trap images obtained from five states across the United States. We tested our model on an independent subset of images not seen during training from the United States and on an out‐of‐sample (or “out‐of‐distribution” in the machine learning literature) dataset of ungulate images from Canada. We also tested the ability of our model to distinguish empty images from those with animals in another out‐of‐sample dataset from Tanzania, containing a faunal community that was novel to the model. The trained model classified approximately 2,000 images per minute on a laptop computer with 16 gigabytes of RAM. The trained model achieved 98% accuracy at identifying species in the United States, the highest accuracy of such a model to date. Out‐of‐sample validation from Canada achieved 82% accuracy and correctly identified 94% of images containing an animal in the dataset from Tanzania. We provide an r package (Machine Learning for Wildlife Image Classification) that allows the users to (a) use the trained model presented here and (b) train their own model using classified images of wildlife from their studies. The use of machine learning to rapidly and accurately classify wildlife in camera trap images can facilitate non‐invasive sampling designs in ecological studies by reducing the burden of manually analysing images. Our r package makes these methods accessible to ecologists.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1614652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1614652</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_16146523</originalsourceid><addsrcrecordid>eNqNirsKwkAQRRdRUDT_MNgH8jKonYhiY2chNmEYJsnIZjdktsnfK2Jh6WnugXsmZpElRRpnaXKf_vjcRKrP5E2-3SVZsTCPK1IrjsEyDk5cA8EDWVSVegR00qEF7ZmEFcQBYccDQhiwh_fXsO7h0PdWCIN492mYvPXNuDKzGq1y9N2lWZ9Pt-Ml9hqkUpLA1JJ3jilUaZkW5SbL_4peX_9EoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning to classify animal species in camera trap images: Applications in ecology</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Tabak, Michael A. ; Norouzzadeh, Mohammad S. ; Wolfson, David W. ; Sweeney, Steven J. ; Vercauteren, Kurt C. ; Snow, Nathan P. ; Halseth, Joseph M. ; Di Salvo, Paul A. ; Lewis, Jesse S. ; White, Michael D. ; Teton, Ben ; Beasley, James C. ; Schlichting, Peter E. ; Boughton, Raoul K. ; Wight, Bethany ; Newkirk, Eric S. ; Ivan, Jacob S. ; Odell, Eric A. ; Brook, Ryan K. ; Lukacs, Paul M. ; Moeller, Anna K. ; Mandeville, Elizabeth G. ; Clune, Jeff ; Miller, Ryan S.</creator><creatorcontrib>Tabak, Michael A. ; Norouzzadeh, Mohammad S. ; Wolfson, David W. ; Sweeney, Steven J. ; Vercauteren, Kurt C. ; Snow, Nathan P. ; Halseth, Joseph M. ; Di Salvo, Paul A. ; Lewis, Jesse S. ; White, Michael D. ; Teton, Ben ; Beasley, James C. ; Schlichting, Peter E. ; Boughton, Raoul K. ; Wight, Bethany ; Newkirk, Eric S. ; Ivan, Jacob S. ; Odell, Eric A. ; Brook, Ryan K. ; Lukacs, Paul M. ; Moeller, Anna K. ; Mandeville, Elizabeth G. ; Clune, Jeff ; Miller, Ryan S. ; Univ. of Georgia, Athens, GA (United States)</creatorcontrib><description>Abstract Motion‐activated cameras (“camera traps”) are increasingly used in ecological and management studies for remotely observing wildlife and are amongst the most powerful tools for wildlife research. However, studies involving camera traps result in millions of images that need to be analysed, typically by visually observing each image, in order to extract data that can be used in ecological analyses. We trained machine learning models using convolutional neural networks with the ResNet‐18 architecture and 3,367,383 images to automatically classify wildlife species from camera trap images obtained from five states across the United States. We tested our model on an independent subset of images not seen during training from the United States and on an out‐of‐sample (or “out‐of‐distribution” in the machine learning literature) dataset of ungulate images from Canada. We also tested the ability of our model to distinguish empty images from those with animals in another out‐of‐sample dataset from Tanzania, containing a faunal community that was novel to the model. The trained model classified approximately 2,000 images per minute on a laptop computer with 16 gigabytes of RAM. The trained model achieved 98% accuracy at identifying species in the United States, the highest accuracy of such a model to date. Out‐of‐sample validation from Canada achieved 82% accuracy and correctly identified 94% of images containing an animal in the dataset from Tanzania. We provide an r package (Machine Learning for Wildlife Image Classification) that allows the users to (a) use the trained model presented here and (b) train their own model using classified images of wildlife from their studies. The use of machine learning to rapidly and accurately classify wildlife in camera trap images can facilitate non‐invasive sampling designs in ecological studies by reducing the burden of manually analysing images. Our r package makes these methods accessible to ecologists.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><language>eng</language><publisher>United States: British Ecological Society</publisher><subject>artificial intelligence ; camera trap ; convolutional neural network ; deep neural networks ; ENVIRONMENTAL SCIENCES ; image classification ; machine learning ; R package ; remote sensing</subject><ispartof>Methods in ecology and evolution, 2018-11, Vol.10 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000229867885 ; 0000000251716493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1614652$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tabak, Michael A.</creatorcontrib><creatorcontrib>Norouzzadeh, Mohammad S.</creatorcontrib><creatorcontrib>Wolfson, David W.</creatorcontrib><creatorcontrib>Sweeney, Steven J.</creatorcontrib><creatorcontrib>Vercauteren, Kurt C.</creatorcontrib><creatorcontrib>Snow, Nathan P.</creatorcontrib><creatorcontrib>Halseth, Joseph M.</creatorcontrib><creatorcontrib>Di Salvo, Paul A.</creatorcontrib><creatorcontrib>Lewis, Jesse S.</creatorcontrib><creatorcontrib>White, Michael D.</creatorcontrib><creatorcontrib>Teton, Ben</creatorcontrib><creatorcontrib>Beasley, James C.</creatorcontrib><creatorcontrib>Schlichting, Peter E.</creatorcontrib><creatorcontrib>Boughton, Raoul K.</creatorcontrib><creatorcontrib>Wight, Bethany</creatorcontrib><creatorcontrib>Newkirk, Eric S.</creatorcontrib><creatorcontrib>Ivan, Jacob S.</creatorcontrib><creatorcontrib>Odell, Eric A.</creatorcontrib><creatorcontrib>Brook, Ryan K.</creatorcontrib><creatorcontrib>Lukacs, Paul M.</creatorcontrib><creatorcontrib>Moeller, Anna K.</creatorcontrib><creatorcontrib>Mandeville, Elizabeth G.</creatorcontrib><creatorcontrib>Clune, Jeff</creatorcontrib><creatorcontrib>Miller, Ryan S.</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><title>Machine learning to classify animal species in camera trap images: Applications in ecology</title><title>Methods in ecology and evolution</title><description>Abstract Motion‐activated cameras (“camera traps”) are increasingly used in ecological and management studies for remotely observing wildlife and are amongst the most powerful tools for wildlife research. However, studies involving camera traps result in millions of images that need to be analysed, typically by visually observing each image, in order to extract data that can be used in ecological analyses. We trained machine learning models using convolutional neural networks with the ResNet‐18 architecture and 3,367,383 images to automatically classify wildlife species from camera trap images obtained from five states across the United States. We tested our model on an independent subset of images not seen during training from the United States and on an out‐of‐sample (or “out‐of‐distribution” in the machine learning literature) dataset of ungulate images from Canada. We also tested the ability of our model to distinguish empty images from those with animals in another out‐of‐sample dataset from Tanzania, containing a faunal community that was novel to the model. The trained model classified approximately 2,000 images per minute on a laptop computer with 16 gigabytes of RAM. The trained model achieved 98% accuracy at identifying species in the United States, the highest accuracy of such a model to date. Out‐of‐sample validation from Canada achieved 82% accuracy and correctly identified 94% of images containing an animal in the dataset from Tanzania. We provide an r package (Machine Learning for Wildlife Image Classification) that allows the users to (a) use the trained model presented here and (b) train their own model using classified images of wildlife from their studies. The use of machine learning to rapidly and accurately classify wildlife in camera trap images can facilitate non‐invasive sampling designs in ecological studies by reducing the burden of manually analysing images. Our r package makes these methods accessible to ecologists.</description><subject>artificial intelligence</subject><subject>camera trap</subject><subject>convolutional neural network</subject><subject>deep neural networks</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>image classification</subject><subject>machine learning</subject><subject>R package</subject><subject>remote sensing</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNirsKwkAQRRdRUDT_MNgH8jKonYhiY2chNmEYJsnIZjdktsnfK2Jh6WnugXsmZpElRRpnaXKf_vjcRKrP5E2-3SVZsTCPK1IrjsEyDk5cA8EDWVSVegR00qEF7ZmEFcQBYccDQhiwh_fXsO7h0PdWCIN492mYvPXNuDKzGq1y9N2lWZ9Pt-Ml9hqkUpLA1JJ3jilUaZkW5SbL_4peX_9EoQ</recordid><startdate>20181126</startdate><enddate>20181126</enddate><creator>Tabak, Michael A.</creator><creator>Norouzzadeh, Mohammad S.</creator><creator>Wolfson, David W.</creator><creator>Sweeney, Steven J.</creator><creator>Vercauteren, Kurt C.</creator><creator>Snow, Nathan P.</creator><creator>Halseth, Joseph M.</creator><creator>Di Salvo, Paul A.</creator><creator>Lewis, Jesse S.</creator><creator>White, Michael D.</creator><creator>Teton, Ben</creator><creator>Beasley, James C.</creator><creator>Schlichting, Peter E.</creator><creator>Boughton, Raoul K.</creator><creator>Wight, Bethany</creator><creator>Newkirk, Eric S.</creator><creator>Ivan, Jacob S.</creator><creator>Odell, Eric A.</creator><creator>Brook, Ryan K.</creator><creator>Lukacs, Paul M.</creator><creator>Moeller, Anna K.</creator><creator>Mandeville, Elizabeth G.</creator><creator>Clune, Jeff</creator><creator>Miller, Ryan S.</creator><general>British Ecological Society</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000229867885</orcidid><orcidid>https://orcid.org/0000000251716493</orcidid></search><sort><creationdate>20181126</creationdate><title>Machine learning to classify animal species in camera trap images: Applications in ecology</title><author>Tabak, Michael A. ; Norouzzadeh, Mohammad S. ; Wolfson, David W. ; Sweeney, Steven J. ; Vercauteren, Kurt C. ; Snow, Nathan P. ; Halseth, Joseph M. ; Di Salvo, Paul A. ; Lewis, Jesse S. ; White, Michael D. ; Teton, Ben ; Beasley, James C. ; Schlichting, Peter E. ; Boughton, Raoul K. ; Wight, Bethany ; Newkirk, Eric S. ; Ivan, Jacob S. ; Odell, Eric A. ; Brook, Ryan K. ; Lukacs, Paul M. ; Moeller, Anna K. ; Mandeville, Elizabeth G. ; Clune, Jeff ; Miller, Ryan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_16146523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>artificial intelligence</topic><topic>camera trap</topic><topic>convolutional neural network</topic><topic>deep neural networks</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>image classification</topic><topic>machine learning</topic><topic>R package</topic><topic>remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tabak, Michael A.</creatorcontrib><creatorcontrib>Norouzzadeh, Mohammad S.</creatorcontrib><creatorcontrib>Wolfson, David W.</creatorcontrib><creatorcontrib>Sweeney, Steven J.</creatorcontrib><creatorcontrib>Vercauteren, Kurt C.</creatorcontrib><creatorcontrib>Snow, Nathan P.</creatorcontrib><creatorcontrib>Halseth, Joseph M.</creatorcontrib><creatorcontrib>Di Salvo, Paul A.</creatorcontrib><creatorcontrib>Lewis, Jesse S.</creatorcontrib><creatorcontrib>White, Michael D.</creatorcontrib><creatorcontrib>Teton, Ben</creatorcontrib><creatorcontrib>Beasley, James C.</creatorcontrib><creatorcontrib>Schlichting, Peter E.</creatorcontrib><creatorcontrib>Boughton, Raoul K.</creatorcontrib><creatorcontrib>Wight, Bethany</creatorcontrib><creatorcontrib>Newkirk, Eric S.</creatorcontrib><creatorcontrib>Ivan, Jacob S.</creatorcontrib><creatorcontrib>Odell, Eric A.</creatorcontrib><creatorcontrib>Brook, Ryan K.</creatorcontrib><creatorcontrib>Lukacs, Paul M.</creatorcontrib><creatorcontrib>Moeller, Anna K.</creatorcontrib><creatorcontrib>Mandeville, Elizabeth G.</creatorcontrib><creatorcontrib>Clune, Jeff</creatorcontrib><creatorcontrib>Miller, Ryan S.</creatorcontrib><creatorcontrib>Univ. of Georgia, Athens, GA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tabak, Michael A.</au><au>Norouzzadeh, Mohammad S.</au><au>Wolfson, David W.</au><au>Sweeney, Steven J.</au><au>Vercauteren, Kurt C.</au><au>Snow, Nathan P.</au><au>Halseth, Joseph M.</au><au>Di Salvo, Paul A.</au><au>Lewis, Jesse S.</au><au>White, Michael D.</au><au>Teton, Ben</au><au>Beasley, James C.</au><au>Schlichting, Peter E.</au><au>Boughton, Raoul K.</au><au>Wight, Bethany</au><au>Newkirk, Eric S.</au><au>Ivan, Jacob S.</au><au>Odell, Eric A.</au><au>Brook, Ryan K.</au><au>Lukacs, Paul M.</au><au>Moeller, Anna K.</au><au>Mandeville, Elizabeth G.</au><au>Clune, Jeff</au><au>Miller, Ryan S.</au><aucorp>Univ. of Georgia, Athens, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning to classify animal species in camera trap images: Applications in ecology</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2018-11-26</date><risdate>2018</risdate><volume>10</volume><issue>4</issue><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Abstract Motion‐activated cameras (“camera traps”) are increasingly used in ecological and management studies for remotely observing wildlife and are amongst the most powerful tools for wildlife research. However, studies involving camera traps result in millions of images that need to be analysed, typically by visually observing each image, in order to extract data that can be used in ecological analyses. We trained machine learning models using convolutional neural networks with the ResNet‐18 architecture and 3,367,383 images to automatically classify wildlife species from camera trap images obtained from five states across the United States. We tested our model on an independent subset of images not seen during training from the United States and on an out‐of‐sample (or “out‐of‐distribution” in the machine learning literature) dataset of ungulate images from Canada. We also tested the ability of our model to distinguish empty images from those with animals in another out‐of‐sample dataset from Tanzania, containing a faunal community that was novel to the model. The trained model classified approximately 2,000 images per minute on a laptop computer with 16 gigabytes of RAM. The trained model achieved 98% accuracy at identifying species in the United States, the highest accuracy of such a model to date. Out‐of‐sample validation from Canada achieved 82% accuracy and correctly identified 94% of images containing an animal in the dataset from Tanzania. We provide an r package (Machine Learning for Wildlife Image Classification) that allows the users to (a) use the trained model presented here and (b) train their own model using classified images of wildlife from their studies. The use of machine learning to rapidly and accurately classify wildlife in camera trap images can facilitate non‐invasive sampling designs in ecological studies by reducing the burden of manually analysing images. Our r package makes these methods accessible to ecologists.</abstract><cop>United States</cop><pub>British Ecological Society</pub><orcidid>https://orcid.org/0000000229867885</orcidid><orcidid>https://orcid.org/0000000251716493</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2018-11, Vol.10 (4)
issn 2041-210X
2041-210X
language eng
recordid cdi_osti_scitechconnect_1614652
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects artificial intelligence
camera trap
convolutional neural network
deep neural networks
ENVIRONMENTAL SCIENCES
image classification
machine learning
R package
remote sensing
title Machine learning to classify animal species in camera trap images: Applications in ecology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T19%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20to%20classify%20animal%20species%20in%20camera%20trap%20images:%20Applications%20in%20ecology&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Tabak,%20Michael%20A.&rft.aucorp=Univ.%20of%20Georgia,%20Athens,%20GA%20(United%20States)&rft.date=2018-11-26&rft.volume=10&rft.issue=4&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/&rft_dat=%3Costi%3E1614652%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true