Synthesis and photoluminescence properties of Ga-doped ZnO nanorods by a low temperature solution method

Gallium doped ZnO nanorods exhibiting good PL performance were grown via a solution method. The as-grown, Ga-doped, and undoped ZnO nanorods displayed a broad yellow–orange emission and a UV emission peak, respectively. By applying an annealing process, the broad yellow–orange emission almost disapp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2018-10, Vol.904 (C), p.158-162
Hauptverfasser: Kurudirek, Sinem V., Kurudirek, Murat, Klein, Benjamin D.B., Summers, Christopher J., Hertel, Nolan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 162
container_issue C
container_start_page 158
container_title Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
container_volume 904
creator Kurudirek, Sinem V.
Kurudirek, Murat
Klein, Benjamin D.B.
Summers, Christopher J.
Hertel, Nolan E.
description Gallium doped ZnO nanorods exhibiting good PL performance were grown via a solution method. The as-grown, Ga-doped, and undoped ZnO nanorods displayed a broad yellow–orange emission and a UV emission peak, respectively. By applying an annealing process, the broad yellow–orange emission almost disappeared and the UV emission increased significantly (for ZnO:Ga (1.2%) peak intensity ratio ≅ 56). With Ga doping, the UV emission peak shifted from 3.27 eV to 3.28 eV. Also, experimental results revealed that a sample doped with Ga at 1.2% by mass exhibited a stronger PL intensity than either the undoped ZnO (higher by 57% acc. to peak intensities) sample or a ZnO sample doped with Ga at 2% (higher by 88% acc. to peak intensities). Both doped and undoped samples were also tested as alpha particle scintillators, and similarly the ZnO:Ga (1.2%) nanorods were found to have higher scintillation response than ZnO:Ga (2%) or undoped ZnO.
doi_str_mv 10.1016/j.nima.2018.07.038
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1614539</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168900218308738</els_id><sourcerecordid>S0168900218308738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-a778fbaec71aa98b67d01a84f13b911f11c23ab5dd3e76a461b1c9755cab1c923</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKfgvTXTbpsWvIjoKizsQb14CWkypVm2SUmyyr69KevZuWQC__8xfITcAsuBQX2_y60ZZV4waHLGc1Y2Z2QBDS-ytuL1OVmkUJO1jBWX5CqEHUvT8mZBhvejjQMGE6i0mk6Di25_GI3FoNAqpJN3E_poMFDX07XMdPpr-mW31ErrvNOBdkcq6d790IhjCst48EhD4kTjLB0xDk5fk4te7gPe_L1L8vny_PH0mm2267enx02mSg4xk5w3fSdRcZCybbqaawayWfVQdi1AD6CKUnaV1iXyWq5q6EC1vKqUnJeiXJK7E9eFaERQJqIalLMWVRRQw6oq2xQqTiHlXQgeezH55M8fBTAxCxU7MQsVs1DBuEhCU-nhVMJ0_rdBP9NnR9r4Ga6d-a_-CzsQgUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synthesis and photoluminescence properties of Ga-doped ZnO nanorods by a low temperature solution method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kurudirek, Sinem V. ; Kurudirek, Murat ; Klein, Benjamin D.B. ; Summers, Christopher J. ; Hertel, Nolan E.</creator><creatorcontrib>Kurudirek, Sinem V. ; Kurudirek, Murat ; Klein, Benjamin D.B. ; Summers, Christopher J. ; Hertel, Nolan E. ; North Carolina State Univ., Raleigh, NC (United States)</creatorcontrib><description>Gallium doped ZnO nanorods exhibiting good PL performance were grown via a solution method. The as-grown, Ga-doped, and undoped ZnO nanorods displayed a broad yellow–orange emission and a UV emission peak, respectively. By applying an annealing process, the broad yellow–orange emission almost disappeared and the UV emission increased significantly (for ZnO:Ga (1.2%) peak intensity ratio ≅ 56). With Ga doping, the UV emission peak shifted from 3.27 eV to 3.28 eV. Also, experimental results revealed that a sample doped with Ga at 1.2% by mass exhibited a stronger PL intensity than either the undoped ZnO (higher by 57% acc. to peak intensities) sample or a ZnO sample doped with Ga at 2% (higher by 88% acc. to peak intensities). Both doped and undoped samples were also tested as alpha particle scintillators, and similarly the ZnO:Ga (1.2%) nanorods were found to have higher scintillation response than ZnO:Ga (2%) or undoped ZnO.</description><identifier>ISSN: 0168-9002</identifier><identifier>EISSN: 1872-9576</identifier><identifier>DOI: 10.1016/j.nima.2018.07.038</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Alpha detection ; Annealing ; Instruments &amp; Instrumentation ; Nuclear Science &amp; Technology ; Photoluminescence ; Physics ; ZnO nanorod array</subject><ispartof>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2018-10, Vol.904 (C), p.158-162</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-a778fbaec71aa98b67d01a84f13b911f11c23ab5dd3e76a461b1c9755cab1c923</citedby><cites>FETCH-LOGICAL-c371t-a778fbaec71aa98b67d01a84f13b911f11c23ab5dd3e76a461b1c9755cab1c923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nima.2018.07.038$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1614539$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kurudirek, Sinem V.</creatorcontrib><creatorcontrib>Kurudirek, Murat</creatorcontrib><creatorcontrib>Klein, Benjamin D.B.</creatorcontrib><creatorcontrib>Summers, Christopher J.</creatorcontrib><creatorcontrib>Hertel, Nolan E.</creatorcontrib><creatorcontrib>North Carolina State Univ., Raleigh, NC (United States)</creatorcontrib><title>Synthesis and photoluminescence properties of Ga-doped ZnO nanorods by a low temperature solution method</title><title>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</title><description>Gallium doped ZnO nanorods exhibiting good PL performance were grown via a solution method. The as-grown, Ga-doped, and undoped ZnO nanorods displayed a broad yellow–orange emission and a UV emission peak, respectively. By applying an annealing process, the broad yellow–orange emission almost disappeared and the UV emission increased significantly (for ZnO:Ga (1.2%) peak intensity ratio ≅ 56). With Ga doping, the UV emission peak shifted from 3.27 eV to 3.28 eV. Also, experimental results revealed that a sample doped with Ga at 1.2% by mass exhibited a stronger PL intensity than either the undoped ZnO (higher by 57% acc. to peak intensities) sample or a ZnO sample doped with Ga at 2% (higher by 88% acc. to peak intensities). Both doped and undoped samples were also tested as alpha particle scintillators, and similarly the ZnO:Ga (1.2%) nanorods were found to have higher scintillation response than ZnO:Ga (2%) or undoped ZnO.</description><subject>Alpha detection</subject><subject>Annealing</subject><subject>Instruments &amp; Instrumentation</subject><subject>Nuclear Science &amp; Technology</subject><subject>Photoluminescence</subject><subject>Physics</subject><subject>ZnO nanorod array</subject><issn>0168-9002</issn><issn>1872-9576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKfgvTXTbpsWvIjoKizsQb14CWkypVm2SUmyyr69KevZuWQC__8xfITcAsuBQX2_y60ZZV4waHLGc1Y2Z2QBDS-ytuL1OVmkUJO1jBWX5CqEHUvT8mZBhvejjQMGE6i0mk6Di25_GI3FoNAqpJN3E_poMFDX07XMdPpr-mW31ErrvNOBdkcq6d790IhjCst48EhD4kTjLB0xDk5fk4te7gPe_L1L8vny_PH0mm2267enx02mSg4xk5w3fSdRcZCybbqaawayWfVQdi1AD6CKUnaV1iXyWq5q6EC1vKqUnJeiXJK7E9eFaERQJqIalLMWVRRQw6oq2xQqTiHlXQgeezH55M8fBTAxCxU7MQsVs1DBuEhCU-nhVMJ0_rdBP9NnR9r4Ga6d-a_-CzsQgUg</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kurudirek, Sinem V.</creator><creator>Kurudirek, Murat</creator><creator>Klein, Benjamin D.B.</creator><creator>Summers, Christopher J.</creator><creator>Hertel, Nolan E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20181001</creationdate><title>Synthesis and photoluminescence properties of Ga-doped ZnO nanorods by a low temperature solution method</title><author>Kurudirek, Sinem V. ; Kurudirek, Murat ; Klein, Benjamin D.B. ; Summers, Christopher J. ; Hertel, Nolan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-a778fbaec71aa98b67d01a84f13b911f11c23ab5dd3e76a461b1c9755cab1c923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alpha detection</topic><topic>Annealing</topic><topic>Instruments &amp; Instrumentation</topic><topic>Nuclear Science &amp; Technology</topic><topic>Photoluminescence</topic><topic>Physics</topic><topic>ZnO nanorod array</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kurudirek, Sinem V.</creatorcontrib><creatorcontrib>Kurudirek, Murat</creatorcontrib><creatorcontrib>Klein, Benjamin D.B.</creatorcontrib><creatorcontrib>Summers, Christopher J.</creatorcontrib><creatorcontrib>Hertel, Nolan E.</creatorcontrib><creatorcontrib>North Carolina State Univ., Raleigh, NC (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kurudirek, Sinem V.</au><au>Kurudirek, Murat</au><au>Klein, Benjamin D.B.</au><au>Summers, Christopher J.</au><au>Hertel, Nolan E.</au><aucorp>North Carolina State Univ., Raleigh, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and photoluminescence properties of Ga-doped ZnO nanorods by a low temperature solution method</atitle><jtitle>Nuclear instruments &amp; methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>904</volume><issue>C</issue><spage>158</spage><epage>162</epage><pages>158-162</pages><issn>0168-9002</issn><eissn>1872-9576</eissn><abstract>Gallium doped ZnO nanorods exhibiting good PL performance were grown via a solution method. The as-grown, Ga-doped, and undoped ZnO nanorods displayed a broad yellow–orange emission and a UV emission peak, respectively. By applying an annealing process, the broad yellow–orange emission almost disappeared and the UV emission increased significantly (for ZnO:Ga (1.2%) peak intensity ratio ≅ 56). With Ga doping, the UV emission peak shifted from 3.27 eV to 3.28 eV. Also, experimental results revealed that a sample doped with Ga at 1.2% by mass exhibited a stronger PL intensity than either the undoped ZnO (higher by 57% acc. to peak intensities) sample or a ZnO sample doped with Ga at 2% (higher by 88% acc. to peak intensities). Both doped and undoped samples were also tested as alpha particle scintillators, and similarly the ZnO:Ga (1.2%) nanorods were found to have higher scintillation response than ZnO:Ga (2%) or undoped ZnO.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nima.2018.07.038</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment, 2018-10, Vol.904 (C), p.158-162
issn 0168-9002
1872-9576
language eng
recordid cdi_osti_scitechconnect_1614539
source Access via ScienceDirect (Elsevier)
subjects Alpha detection
Annealing
Instruments & Instrumentation
Nuclear Science & Technology
Photoluminescence
Physics
ZnO nanorod array
title Synthesis and photoluminescence properties of Ga-doped ZnO nanorods by a low temperature solution method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A36%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20photoluminescence%20properties%20of%20Ga-doped%20ZnO%20nanorods%20by%20a%20low%20temperature%20solution%20method&rft.jtitle=Nuclear%20instruments%20&%20methods%20in%20physics%20research.%20Section%20A,%20Accelerators,%20spectrometers,%20detectors%20and%20associated%20equipment&rft.au=Kurudirek,%20Sinem%20V.&rft.aucorp=North%20Carolina%20State%20Univ.,%20Raleigh,%20NC%20(United%20States)&rft.date=2018-10-01&rft.volume=904&rft.issue=C&rft.spage=158&rft.epage=162&rft.pages=158-162&rft.issn=0168-9002&rft.eissn=1872-9576&rft_id=info:doi/10.1016/j.nima.2018.07.038&rft_dat=%3Celsevier_osti_%3ES0168900218308738%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0168900218308738&rfr_iscdi=true