Porosity and storage capacity of Middle Devonian shale: A function of thermal maturity, total organic carbon, and clay content

Porosity and pore size distribution (PSD) are critical reservoir parameters. Pore surface area, pore volume, PSD, and porosity were measured using subcritical nitrogen (N2) adsorption, and helium porosimetry. A suite of 17 samples were collected from 4 wells in Pennsylvania and West Virginia to anal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel (Guildford) 2019-04, Vol.241 (C), p.1036-1044
Hauptverfasser: Song, Liaosha, Martin, Keithan, Carr, Timothy R., Ghahfarokhi, Payam Kavousi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue C
container_start_page 1036
container_title Fuel (Guildford)
container_volume 241
creator Song, Liaosha
Martin, Keithan
Carr, Timothy R.
Ghahfarokhi, Payam Kavousi
description Porosity and pore size distribution (PSD) are critical reservoir parameters. Pore surface area, pore volume, PSD, and porosity were measured using subcritical nitrogen (N2) adsorption, and helium porosimetry. A suite of 17 samples were collected from 4 wells in Pennsylvania and West Virginia to analyze the evolution of porosity with increasing thermal maturity in Middle Devonian shales of the Appalachian Basin. The thermal maturity of the tested samples covers a wide range in the hydrocarbon generation sequence from wet gas/condensate zone (vitrinite reflectance (Ro) = 1.16%) to post-mature zone (Ro = 2.79%). Shale samples from the Marcellus Shale and Mahantango Formation used in this study have total organic carbon contents from 0.41 to 7.88 wt%. Results indicate that total organic carbon (TOC) has the strongest effect on porosity and pore structure. The presence of organic matter in shale strongly enhances the storage capacity by increasing the specific surface area and pore volume, which represents sorption storage capacity and free-gas storage capacity. Differences in porosity and pore structure have a complex relationship to thermal maturity, micro texture, mineralogy, clay content, and TOC.
doi_str_mv 10.1016/j.fuel.2018.12.106
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1614229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118321665</els_id><sourcerecordid>2199895841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-781dfbab8c58e8a8e9708d9b66b0d5ce6f71e424181fd2a8f877030d95fe94ed3</originalsourceid><addsrcrecordid>eNp9kU9vVCEUxYnRxLH6Bboiuu0bubx_YNw0tVWTGl3YNeHBpcPkDYzAazIbP7s8x7UrwsnvXM7lEHIJbAsMhvf7rVtw3nIGYgu8asMzsgExts0IffucbFilGt4O8JK8ynnPGBtF323I7x8xxezLiepgaS4x6UekRh-1WcXo6Ddv7Yz0Ez7F4HWgeadn_ECvqVuCKT6GFSo7TAc904MuS6rGK1piqfeYHnXwpg5MUwxXfx8xsz5RE0PBUF6TF07PGd_8Oy_Iw93tz5svzf33z19vru8b00pZmlGAdZOehOkFCi1QjkxYOQ3DxGxvcHAjYMc7EOAs18KJcWQts7J3KDu07QV5e54bc_Eq193Q7GqGgKYoGKDjXFbo3Rk6pvhrwVzUPi4p1FyKg5RC9qKDSvEzZerH5YROHZM_6HRSwNRahtqrtQy1lqGAV22opo9nE9YlnzymNQMGg9anNYKN_n_2P6vFk_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199895841</pqid></control><display><type>article</type><title>Porosity and storage capacity of Middle Devonian shale: A function of thermal maturity, total organic carbon, and clay content</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Song, Liaosha ; Martin, Keithan ; Carr, Timothy R. ; Ghahfarokhi, Payam Kavousi</creator><creatorcontrib>Song, Liaosha ; Martin, Keithan ; Carr, Timothy R. ; Ghahfarokhi, Payam Kavousi ; West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><description>Porosity and pore size distribution (PSD) are critical reservoir parameters. Pore surface area, pore volume, PSD, and porosity were measured using subcritical nitrogen (N2) adsorption, and helium porosimetry. A suite of 17 samples were collected from 4 wells in Pennsylvania and West Virginia to analyze the evolution of porosity with increasing thermal maturity in Middle Devonian shales of the Appalachian Basin. The thermal maturity of the tested samples covers a wide range in the hydrocarbon generation sequence from wet gas/condensate zone (vitrinite reflectance (Ro) = 1.16%) to post-mature zone (Ro = 2.79%). Shale samples from the Marcellus Shale and Mahantango Formation used in this study have total organic carbon contents from 0.41 to 7.88 wt%. Results indicate that total organic carbon (TOC) has the strongest effect on porosity and pore structure. The presence of organic matter in shale strongly enhances the storage capacity by increasing the specific surface area and pore volume, which represents sorption storage capacity and free-gas storage capacity. Differences in porosity and pore structure have a complex relationship to thermal maturity, micro texture, mineralogy, clay content, and TOC.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.12.106</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Carbon ; Clay ; Clay minerals ; Devonian ; Energy &amp; Fuels ; Engineering ; Helium ; Marcellus Shale ; Maturity ; Mineralogy ; Organic carbon ; Organic matter ; Pore size ; Pore size distribution ; Pore structure ; Porosity ; Reflectance ; Shale ; Shale gas ; Shale gas reservoirs ; Shales ; Size distribution ; Storage capacity ; Surface area ; Total organic carbon</subject><ispartof>Fuel (Guildford), 2019-04, Vol.241 (C), p.1036-1044</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-781dfbab8c58e8a8e9708d9b66b0d5ce6f71e424181fd2a8f877030d95fe94ed3</citedby><cites>FETCH-LOGICAL-c399t-781dfbab8c58e8a8e9708d9b66b0d5ce6f71e424181fd2a8f877030d95fe94ed3</cites><orcidid>0000-0002-5851-6611 ; 0000000258516611</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.fuel.2018.12.106$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1614229$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Liaosha</creatorcontrib><creatorcontrib>Martin, Keithan</creatorcontrib><creatorcontrib>Carr, Timothy R.</creatorcontrib><creatorcontrib>Ghahfarokhi, Payam Kavousi</creatorcontrib><creatorcontrib>West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><title>Porosity and storage capacity of Middle Devonian shale: A function of thermal maturity, total organic carbon, and clay content</title><title>Fuel (Guildford)</title><description>Porosity and pore size distribution (PSD) are critical reservoir parameters. Pore surface area, pore volume, PSD, and porosity were measured using subcritical nitrogen (N2) adsorption, and helium porosimetry. A suite of 17 samples were collected from 4 wells in Pennsylvania and West Virginia to analyze the evolution of porosity with increasing thermal maturity in Middle Devonian shales of the Appalachian Basin. The thermal maturity of the tested samples covers a wide range in the hydrocarbon generation sequence from wet gas/condensate zone (vitrinite reflectance (Ro) = 1.16%) to post-mature zone (Ro = 2.79%). Shale samples from the Marcellus Shale and Mahantango Formation used in this study have total organic carbon contents from 0.41 to 7.88 wt%. Results indicate that total organic carbon (TOC) has the strongest effect on porosity and pore structure. The presence of organic matter in shale strongly enhances the storage capacity by increasing the specific surface area and pore volume, which represents sorption storage capacity and free-gas storage capacity. Differences in porosity and pore structure have a complex relationship to thermal maturity, micro texture, mineralogy, clay content, and TOC.</description><subject>Carbon</subject><subject>Clay</subject><subject>Clay minerals</subject><subject>Devonian</subject><subject>Energy &amp; Fuels</subject><subject>Engineering</subject><subject>Helium</subject><subject>Marcellus Shale</subject><subject>Maturity</subject><subject>Mineralogy</subject><subject>Organic carbon</subject><subject>Organic matter</subject><subject>Pore size</subject><subject>Pore size distribution</subject><subject>Pore structure</subject><subject>Porosity</subject><subject>Reflectance</subject><subject>Shale</subject><subject>Shale gas</subject><subject>Shale gas reservoirs</subject><subject>Shales</subject><subject>Size distribution</subject><subject>Storage capacity</subject><subject>Surface area</subject><subject>Total organic carbon</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kU9vVCEUxYnRxLH6Bboiuu0bubx_YNw0tVWTGl3YNeHBpcPkDYzAazIbP7s8x7UrwsnvXM7lEHIJbAsMhvf7rVtw3nIGYgu8asMzsgExts0IffucbFilGt4O8JK8ynnPGBtF323I7x8xxezLiepgaS4x6UekRh-1WcXo6Ddv7Yz0Ez7F4HWgeadn_ECvqVuCKT6GFSo7TAc904MuS6rGK1piqfeYHnXwpg5MUwxXfx8xsz5RE0PBUF6TF07PGd_8Oy_Iw93tz5svzf33z19vru8b00pZmlGAdZOehOkFCi1QjkxYOQ3DxGxvcHAjYMc7EOAs18KJcWQts7J3KDu07QV5e54bc_Eq193Q7GqGgKYoGKDjXFbo3Rk6pvhrwVzUPi4p1FyKg5RC9qKDSvEzZerH5YROHZM_6HRSwNRahtqrtQy1lqGAV22opo9nE9YlnzymNQMGg9anNYKN_n_2P6vFk_E</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Song, Liaosha</creator><creator>Martin, Keithan</creator><creator>Carr, Timothy R.</creator><creator>Ghahfarokhi, Payam Kavousi</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5851-6611</orcidid><orcidid>https://orcid.org/0000000258516611</orcidid></search><sort><creationdate>20190401</creationdate><title>Porosity and storage capacity of Middle Devonian shale: A function of thermal maturity, total organic carbon, and clay content</title><author>Song, Liaosha ; Martin, Keithan ; Carr, Timothy R. ; Ghahfarokhi, Payam Kavousi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-781dfbab8c58e8a8e9708d9b66b0d5ce6f71e424181fd2a8f877030d95fe94ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Carbon</topic><topic>Clay</topic><topic>Clay minerals</topic><topic>Devonian</topic><topic>Energy &amp; Fuels</topic><topic>Engineering</topic><topic>Helium</topic><topic>Marcellus Shale</topic><topic>Maturity</topic><topic>Mineralogy</topic><topic>Organic carbon</topic><topic>Organic matter</topic><topic>Pore size</topic><topic>Pore size distribution</topic><topic>Pore structure</topic><topic>Porosity</topic><topic>Reflectance</topic><topic>Shale</topic><topic>Shale gas</topic><topic>Shale gas reservoirs</topic><topic>Shales</topic><topic>Size distribution</topic><topic>Storage capacity</topic><topic>Surface area</topic><topic>Total organic carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Liaosha</creatorcontrib><creatorcontrib>Martin, Keithan</creatorcontrib><creatorcontrib>Carr, Timothy R.</creatorcontrib><creatorcontrib>Ghahfarokhi, Payam Kavousi</creatorcontrib><creatorcontrib>West Virginia Univ., Morgantown, WV (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Liaosha</au><au>Martin, Keithan</au><au>Carr, Timothy R.</au><au>Ghahfarokhi, Payam Kavousi</au><aucorp>West Virginia Univ., Morgantown, WV (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porosity and storage capacity of Middle Devonian shale: A function of thermal maturity, total organic carbon, and clay content</atitle><jtitle>Fuel (Guildford)</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>241</volume><issue>C</issue><spage>1036</spage><epage>1044</epage><pages>1036-1044</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>Porosity and pore size distribution (PSD) are critical reservoir parameters. Pore surface area, pore volume, PSD, and porosity were measured using subcritical nitrogen (N2) adsorption, and helium porosimetry. A suite of 17 samples were collected from 4 wells in Pennsylvania and West Virginia to analyze the evolution of porosity with increasing thermal maturity in Middle Devonian shales of the Appalachian Basin. The thermal maturity of the tested samples covers a wide range in the hydrocarbon generation sequence from wet gas/condensate zone (vitrinite reflectance (Ro) = 1.16%) to post-mature zone (Ro = 2.79%). Shale samples from the Marcellus Shale and Mahantango Formation used in this study have total organic carbon contents from 0.41 to 7.88 wt%. Results indicate that total organic carbon (TOC) has the strongest effect on porosity and pore structure. The presence of organic matter in shale strongly enhances the storage capacity by increasing the specific surface area and pore volume, which represents sorption storage capacity and free-gas storage capacity. Differences in porosity and pore structure have a complex relationship to thermal maturity, micro texture, mineralogy, clay content, and TOC.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.12.106</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5851-6611</orcidid><orcidid>https://orcid.org/0000000258516611</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-2361
ispartof Fuel (Guildford), 2019-04, Vol.241 (C), p.1036-1044
issn 0016-2361
1873-7153
language eng
recordid cdi_osti_scitechconnect_1614229
source Elsevier ScienceDirect Journals Complete
subjects Carbon
Clay
Clay minerals
Devonian
Energy & Fuels
Engineering
Helium
Marcellus Shale
Maturity
Mineralogy
Organic carbon
Organic matter
Pore size
Pore size distribution
Pore structure
Porosity
Reflectance
Shale
Shale gas
Shale gas reservoirs
Shales
Size distribution
Storage capacity
Surface area
Total organic carbon
title Porosity and storage capacity of Middle Devonian shale: A function of thermal maturity, total organic carbon, and clay content
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T04%3A57%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porosity%20and%20storage%20capacity%20of%20Middle%20Devonian%20shale:%20A%20function%20of%20thermal%20maturity,%20total%20organic%20carbon,%20and%20clay%20content&rft.jtitle=Fuel%20(Guildford)&rft.au=Song,%20Liaosha&rft.aucorp=West%20Virginia%20Univ.,%20Morgantown,%20WV%20(United%20States)&rft.date=2019-04-01&rft.volume=241&rft.issue=C&rft.spage=1036&rft.epage=1044&rft.pages=1036-1044&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.12.106&rft_dat=%3Cproquest_osti_%3E2199895841%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199895841&rft_id=info:pmid/&rft_els_id=S0016236118321665&rfr_iscdi=true