Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression
The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating con...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2019-02, Vol.165 (C), p.259-269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | C |
container_start_page | 259 |
container_title | Acta materialia |
container_volume | 165 |
creator | Gorgannejad, S. Reisi Gahrooei, M. Paynabar, K. Neu, R.W. |
description | The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating conditions. In this paper, data analytics algorithms are used to develop such relationships. High-throughput aging experiments were performed to generate a dataset comprising multiple aged microstructure images. The digital images of the γ/γ′ phase are used as an indicator of the aged state and statistically evaluated using 2-point spatial correlation functions. To reduce the high-dimensional structural information so that a quantitative linkage can be made between aging conditions and the aged state, two algorithms were considered. The first algorithm involves two steps, first using conventional principal component analysis (PCA) to provide a lower dimension descriptor of the microstructure and then regression analysis to generate the linkage. The second algorithm, called tensor regression (TR), is a novel algorithm that merges the dimensionality reduction and model construction step into a single step. The output of the TR model is directly the statistical descriptors of the microstructure rather than the PC scores, thereby reducing the amount of information loss. Even though PCA provides an effective tool for visualization and classification of data, the model built based on the TR algorithm is shown to have stronger prediction capability.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2018.11.047 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1614171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645418309236</els_id><sourcerecordid>S1359645418309236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a58f4ca585dc1aa48ad998ff6b798c7e1a59d333c76ab2296c824c536ffe5ab63</originalsourceid><addsrcrecordid>eNqFkNtqwzAMhsPYYF23RxiY3SeLYjuHq1HKTlB2gO3aUxyldWmdYruDvv0c2vvdSEL69Qt9SXILeQY5lPfrDHXALYasyKHOALJcVGfJBOqKp4WQ_DzWXDZpKaS4TK68X-c5FJXIJ8nP5x5tMAGD-SW2c9QZHcxg2dCzsCKGS-qYj2MaO28mbdET8_sdOdxshoNne2_skn3MZwxtxwJZPzjmaOnI-2h0nVz0uPF0c8rT5Pvp8Wv-ki7en1_ns0Wqec1DirLuhY5RdhoQRY1d09R9X7ZVU-uKAGXTcc51VWJbFE2p60Joycu-J4ltyafJ3dF38MEor00gvdKDtaSDghIEVBBF8ijSbvDeUa92zmzRHRTkamSp1urEUo0sFYCKLOPew3GP4ge_htx4gKyOtNzo3w3mH4c_y_OBOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gorgannejad, S. ; Reisi Gahrooei, M. ; Paynabar, K. ; Neu, R.W.</creator><creatorcontrib>Gorgannejad, S. ; Reisi Gahrooei, M. ; Paynabar, K. ; Neu, R.W. ; Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><description>The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating conditions. In this paper, data analytics algorithms are used to develop such relationships. High-throughput aging experiments were performed to generate a dataset comprising multiple aged microstructure images. The digital images of the γ/γ′ phase are used as an indicator of the aged state and statistically evaluated using 2-point spatial correlation functions. To reduce the high-dimensional structural information so that a quantitative linkage can be made between aging conditions and the aged state, two algorithms were considered. The first algorithm involves two steps, first using conventional principal component analysis (PCA) to provide a lower dimension descriptor of the microstructure and then regression analysis to generate the linkage. The second algorithm, called tensor regression (TR), is a novel algorithm that merges the dimensionality reduction and model construction step into a single step. The output of the TR model is directly the statistical descriptors of the microstructure rather than the PC scores, thereby reducing the amount of information loss. Even though PCA provides an effective tool for visualization and classification of data, the model built based on the TR algorithm is shown to have stronger prediction capability.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2018.11.047</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Aging ; Materials Science ; Metallurgy & Metallurgical Engineering ; Ni-base superalloys ; Principal component analysis ; Process-structure relations ; Tensor regression</subject><ispartof>Acta materialia, 2019-02, Vol.165 (C), p.259-269</ispartof><rights>2018 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a58f4ca585dc1aa48ad998ff6b798c7e1a59d333c76ab2296c824c536ffe5ab63</citedby><cites>FETCH-LOGICAL-c383t-a58f4ca585dc1aa48ad998ff6b798c7e1a59d333c76ab2296c824c536ffe5ab63</cites><orcidid>0000-0002-3779-3038 ; 0000000237793038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2018.11.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1614171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorgannejad, S.</creatorcontrib><creatorcontrib>Reisi Gahrooei, M.</creatorcontrib><creatorcontrib>Paynabar, K.</creatorcontrib><creatorcontrib>Neu, R.W.</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><title>Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression</title><title>Acta materialia</title><description>The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating conditions. In this paper, data analytics algorithms are used to develop such relationships. High-throughput aging experiments were performed to generate a dataset comprising multiple aged microstructure images. The digital images of the γ/γ′ phase are used as an indicator of the aged state and statistically evaluated using 2-point spatial correlation functions. To reduce the high-dimensional structural information so that a quantitative linkage can be made between aging conditions and the aged state, two algorithms were considered. The first algorithm involves two steps, first using conventional principal component analysis (PCA) to provide a lower dimension descriptor of the microstructure and then regression analysis to generate the linkage. The second algorithm, called tensor regression (TR), is a novel algorithm that merges the dimensionality reduction and model construction step into a single step. The output of the TR model is directly the statistical descriptors of the microstructure rather than the PC scores, thereby reducing the amount of information loss. Even though PCA provides an effective tool for visualization and classification of data, the model built based on the TR algorithm is shown to have stronger prediction capability.
[Display omitted]</description><subject>Aging</subject><subject>Materials Science</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Ni-base superalloys</subject><subject>Principal component analysis</subject><subject>Process-structure relations</subject><subject>Tensor regression</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNtqwzAMhsPYYF23RxiY3SeLYjuHq1HKTlB2gO3aUxyldWmdYruDvv0c2vvdSEL69Qt9SXILeQY5lPfrDHXALYasyKHOALJcVGfJBOqKp4WQ_DzWXDZpKaS4TK68X-c5FJXIJ8nP5x5tMAGD-SW2c9QZHcxg2dCzsCKGS-qYj2MaO28mbdET8_sdOdxshoNne2_skn3MZwxtxwJZPzjmaOnI-2h0nVz0uPF0c8rT5Pvp8Wv-ki7en1_ns0Wqec1DirLuhY5RdhoQRY1d09R9X7ZVU-uKAGXTcc51VWJbFE2p60Joycu-J4ltyafJ3dF38MEor00gvdKDtaSDghIEVBBF8ijSbvDeUa92zmzRHRTkamSp1urEUo0sFYCKLOPew3GP4ge_htx4gKyOtNzo3w3mH4c_y_OBOw</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Gorgannejad, S.</creator><creator>Reisi Gahrooei, M.</creator><creator>Paynabar, K.</creator><creator>Neu, R.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3779-3038</orcidid><orcidid>https://orcid.org/0000000237793038</orcidid></search><sort><creationdate>20190215</creationdate><title>Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression</title><author>Gorgannejad, S. ; Reisi Gahrooei, M. ; Paynabar, K. ; Neu, R.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a58f4ca585dc1aa48ad998ff6b798c7e1a59d333c76ab2296c824c536ffe5ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Materials Science</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Ni-base superalloys</topic><topic>Principal component analysis</topic><topic>Process-structure relations</topic><topic>Tensor regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorgannejad, S.</creatorcontrib><creatorcontrib>Reisi Gahrooei, M.</creatorcontrib><creatorcontrib>Paynabar, K.</creatorcontrib><creatorcontrib>Neu, R.W.</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorgannejad, S.</au><au>Reisi Gahrooei, M.</au><au>Paynabar, K.</au><au>Neu, R.W.</au><aucorp>Georgia Inst. of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression</atitle><jtitle>Acta materialia</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>165</volume><issue>C</issue><spage>259</spage><epage>269</epage><pages>259-269</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating conditions. In this paper, data analytics algorithms are used to develop such relationships. High-throughput aging experiments were performed to generate a dataset comprising multiple aged microstructure images. The digital images of the γ/γ′ phase are used as an indicator of the aged state and statistically evaluated using 2-point spatial correlation functions. To reduce the high-dimensional structural information so that a quantitative linkage can be made between aging conditions and the aged state, two algorithms were considered. The first algorithm involves two steps, first using conventional principal component analysis (PCA) to provide a lower dimension descriptor of the microstructure and then regression analysis to generate the linkage. The second algorithm, called tensor regression (TR), is a novel algorithm that merges the dimensionality reduction and model construction step into a single step. The output of the TR model is directly the statistical descriptors of the microstructure rather than the PC scores, thereby reducing the amount of information loss. Even though PCA provides an effective tool for visualization and classification of data, the model built based on the TR algorithm is shown to have stronger prediction capability.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2018.11.047</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3779-3038</orcidid><orcidid>https://orcid.org/0000000237793038</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2019-02, Vol.165 (C), p.259-269 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_1614171 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Aging Materials Science Metallurgy & Metallurgical Engineering Ni-base superalloys Principal component analysis Process-structure relations Tensor regression |
title | Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20prediction%20of%20the%20aged%20state%20of%20Ni-base%20superalloys%20using%20PCA%20and%20tensor%20regression&rft.jtitle=Acta%20materialia&rft.au=Gorgannejad,%20S.&rft.aucorp=Georgia%20Inst.%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2019-02-15&rft.volume=165&rft.issue=C&rft.spage=259&rft.epage=269&rft.pages=259-269&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2018.11.047&rft_dat=%3Celsevier_osti_%3ES1359645418309236%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645418309236&rfr_iscdi=true |