Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression

The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2019-02, Vol.165 (C), p.259-269
Hauptverfasser: Gorgannejad, S., Reisi Gahrooei, M., Paynabar, K., Neu, R.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue C
container_start_page 259
container_title Acta materialia
container_volume 165
creator Gorgannejad, S.
Reisi Gahrooei, M.
Paynabar, K.
Neu, R.W.
description The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating conditions. In this paper, data analytics algorithms are used to develop such relationships. High-throughput aging experiments were performed to generate a dataset comprising multiple aged microstructure images. The digital images of the γ/γ′ phase are used as an indicator of the aged state and statistically evaluated using 2-point spatial correlation functions. To reduce the high-dimensional structural information so that a quantitative linkage can be made between aging conditions and the aged state, two algorithms were considered. The first algorithm involves two steps, first using conventional principal component analysis (PCA) to provide a lower dimension descriptor of the microstructure and then regression analysis to generate the linkage. The second algorithm, called tensor regression (TR), is a novel algorithm that merges the dimensionality reduction and model construction step into a single step. The output of the TR model is directly the statistical descriptors of the microstructure rather than the PC scores, thereby reducing the amount of information loss. Even though PCA provides an effective tool for visualization and classification of data, the model built based on the TR algorithm is shown to have stronger prediction capability. [Display omitted]
doi_str_mv 10.1016/j.actamat.2018.11.047
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1614171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645418309236</els_id><sourcerecordid>S1359645418309236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a58f4ca585dc1aa48ad998ff6b798c7e1a59d333c76ab2296c824c536ffe5ab63</originalsourceid><addsrcrecordid>eNqFkNtqwzAMhsPYYF23RxiY3SeLYjuHq1HKTlB2gO3aUxyldWmdYruDvv0c2vvdSEL69Qt9SXILeQY5lPfrDHXALYasyKHOALJcVGfJBOqKp4WQ_DzWXDZpKaS4TK68X-c5FJXIJ8nP5x5tMAGD-SW2c9QZHcxg2dCzsCKGS-qYj2MaO28mbdET8_sdOdxshoNne2_skn3MZwxtxwJZPzjmaOnI-2h0nVz0uPF0c8rT5Pvp8Wv-ki7en1_ns0Wqec1DirLuhY5RdhoQRY1d09R9X7ZVU-uKAGXTcc51VWJbFE2p60Joycu-J4ltyafJ3dF38MEor00gvdKDtaSDghIEVBBF8ijSbvDeUa92zmzRHRTkamSp1urEUo0sFYCKLOPew3GP4ge_htx4gKyOtNzo3w3mH4c_y_OBOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Gorgannejad, S. ; Reisi Gahrooei, M. ; Paynabar, K. ; Neu, R.W.</creator><creatorcontrib>Gorgannejad, S. ; Reisi Gahrooei, M. ; Paynabar, K. ; Neu, R.W. ; Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><description>The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating conditions. In this paper, data analytics algorithms are used to develop such relationships. High-throughput aging experiments were performed to generate a dataset comprising multiple aged microstructure images. The digital images of the γ/γ′ phase are used as an indicator of the aged state and statistically evaluated using 2-point spatial correlation functions. To reduce the high-dimensional structural information so that a quantitative linkage can be made between aging conditions and the aged state, two algorithms were considered. The first algorithm involves two steps, first using conventional principal component analysis (PCA) to provide a lower dimension descriptor of the microstructure and then regression analysis to generate the linkage. The second algorithm, called tensor regression (TR), is a novel algorithm that merges the dimensionality reduction and model construction step into a single step. The output of the TR model is directly the statistical descriptors of the microstructure rather than the PC scores, thereby reducing the amount of information loss. Even though PCA provides an effective tool for visualization and classification of data, the model built based on the TR algorithm is shown to have stronger prediction capability. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2018.11.047</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Aging ; Materials Science ; Metallurgy &amp; Metallurgical Engineering ; Ni-base superalloys ; Principal component analysis ; Process-structure relations ; Tensor regression</subject><ispartof>Acta materialia, 2019-02, Vol.165 (C), p.259-269</ispartof><rights>2018 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a58f4ca585dc1aa48ad998ff6b798c7e1a59d333c76ab2296c824c536ffe5ab63</citedby><cites>FETCH-LOGICAL-c383t-a58f4ca585dc1aa48ad998ff6b798c7e1a59d333c76ab2296c824c536ffe5ab63</cites><orcidid>0000-0002-3779-3038 ; 0000000237793038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2018.11.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1614171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gorgannejad, S.</creatorcontrib><creatorcontrib>Reisi Gahrooei, M.</creatorcontrib><creatorcontrib>Paynabar, K.</creatorcontrib><creatorcontrib>Neu, R.W.</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><title>Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression</title><title>Acta materialia</title><description>The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating conditions. In this paper, data analytics algorithms are used to develop such relationships. High-throughput aging experiments were performed to generate a dataset comprising multiple aged microstructure images. The digital images of the γ/γ′ phase are used as an indicator of the aged state and statistically evaluated using 2-point spatial correlation functions. To reduce the high-dimensional structural information so that a quantitative linkage can be made between aging conditions and the aged state, two algorithms were considered. The first algorithm involves two steps, first using conventional principal component analysis (PCA) to provide a lower dimension descriptor of the microstructure and then regression analysis to generate the linkage. The second algorithm, called tensor regression (TR), is a novel algorithm that merges the dimensionality reduction and model construction step into a single step. The output of the TR model is directly the statistical descriptors of the microstructure rather than the PC scores, thereby reducing the amount of information loss. Even though PCA provides an effective tool for visualization and classification of data, the model built based on the TR algorithm is shown to have stronger prediction capability. [Display omitted]</description><subject>Aging</subject><subject>Materials Science</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Ni-base superalloys</subject><subject>Principal component analysis</subject><subject>Process-structure relations</subject><subject>Tensor regression</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNtqwzAMhsPYYF23RxiY3SeLYjuHq1HKTlB2gO3aUxyldWmdYruDvv0c2vvdSEL69Qt9SXILeQY5lPfrDHXALYasyKHOALJcVGfJBOqKp4WQ_DzWXDZpKaS4TK68X-c5FJXIJ8nP5x5tMAGD-SW2c9QZHcxg2dCzsCKGS-qYj2MaO28mbdET8_sdOdxshoNne2_skn3MZwxtxwJZPzjmaOnI-2h0nVz0uPF0c8rT5Pvp8Wv-ki7en1_ns0Wqec1DirLuhY5RdhoQRY1d09R9X7ZVU-uKAGXTcc51VWJbFE2p60Joycu-J4ltyafJ3dF38MEor00gvdKDtaSDghIEVBBF8ijSbvDeUa92zmzRHRTkamSp1urEUo0sFYCKLOPew3GP4ge_htx4gKyOtNzo3w3mH4c_y_OBOw</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Gorgannejad, S.</creator><creator>Reisi Gahrooei, M.</creator><creator>Paynabar, K.</creator><creator>Neu, R.W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3779-3038</orcidid><orcidid>https://orcid.org/0000000237793038</orcidid></search><sort><creationdate>20190215</creationdate><title>Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression</title><author>Gorgannejad, S. ; Reisi Gahrooei, M. ; Paynabar, K. ; Neu, R.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a58f4ca585dc1aa48ad998ff6b798c7e1a59d333c76ab2296c824c536ffe5ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>Materials Science</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Ni-base superalloys</topic><topic>Principal component analysis</topic><topic>Process-structure relations</topic><topic>Tensor regression</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gorgannejad, S.</creatorcontrib><creatorcontrib>Reisi Gahrooei, M.</creatorcontrib><creatorcontrib>Paynabar, K.</creatorcontrib><creatorcontrib>Neu, R.W.</creatorcontrib><creatorcontrib>Georgia Inst. of Technology, Atlanta, GA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gorgannejad, S.</au><au>Reisi Gahrooei, M.</au><au>Paynabar, K.</au><au>Neu, R.W.</au><aucorp>Georgia Inst. of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression</atitle><jtitle>Acta materialia</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>165</volume><issue>C</issue><spage>259</spage><epage>269</epage><pages>259-269</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The microstructure of Ni-base superalloy components evolves and degrades during the operation of gas turbines. Since the remaining life depends on the degradation, it is highly desirable to have a quantitative descriptor of the aged state of the microstructure that can be linked to the operating conditions. In this paper, data analytics algorithms are used to develop such relationships. High-throughput aging experiments were performed to generate a dataset comprising multiple aged microstructure images. The digital images of the γ/γ′ phase are used as an indicator of the aged state and statistically evaluated using 2-point spatial correlation functions. To reduce the high-dimensional structural information so that a quantitative linkage can be made between aging conditions and the aged state, two algorithms were considered. The first algorithm involves two steps, first using conventional principal component analysis (PCA) to provide a lower dimension descriptor of the microstructure and then regression analysis to generate the linkage. The second algorithm, called tensor regression (TR), is a novel algorithm that merges the dimensionality reduction and model construction step into a single step. The output of the TR model is directly the statistical descriptors of the microstructure rather than the PC scores, thereby reducing the amount of information loss. Even though PCA provides an effective tool for visualization and classification of data, the model built based on the TR algorithm is shown to have stronger prediction capability. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2018.11.047</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3779-3038</orcidid><orcidid>https://orcid.org/0000000237793038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2019-02, Vol.165 (C), p.259-269
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1614171
source ScienceDirect Journals (5 years ago - present)
subjects Aging
Materials Science
Metallurgy & Metallurgical Engineering
Ni-base superalloys
Principal component analysis
Process-structure relations
Tensor regression
title Quantitative prediction of the aged state of Ni-base superalloys using PCA and tensor regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20prediction%20of%20the%20aged%20state%20of%20Ni-base%20superalloys%20using%20PCA%20and%20tensor%20regression&rft.jtitle=Acta%20materialia&rft.au=Gorgannejad,%20S.&rft.aucorp=Georgia%20Inst.%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2019-02-15&rft.volume=165&rft.issue=C&rft.spage=259&rft.epage=269&rft.pages=259-269&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2018.11.047&rft_dat=%3Celsevier_osti_%3ES1359645418309236%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645418309236&rfr_iscdi=true