Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering
Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length r...
Gespeichert in:
Veröffentlicht in: | IEEE journal of photovoltaics 2018-11, Vol.8 (6), p.1449-1456 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1456 |
---|---|
container_issue | 6 |
container_start_page | 1449 |
container_title | IEEE journal of photovoltaics |
container_volume | 8 |
creator | Liu, Zhe Wieghold, Sarah Meyer, Luke T. Cavill, Loewen K. Buonassisi, Tonio Sachs, Emanuel M. |
description | Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length required for fracture significantly decreases for the same loading conditions. Currently, very few industry-standard tools can reliably detect submillimeter cracks, which will become more critical for thinner wafers. In this work, we demonstrate a technique to detect submillimeter cracks located at the edges of various multicrystalline silicon wafers and solar cells. The proposed technique, which is based on near-infrared dark-field imaging with vicinal laser illumination from the wafer edge, has several advantages over state-of-the-art optical transmission imaging and dark-field scattering techniques. Moreover, we adapt this technique to achieve the high-throughput requirement of inline metrology; hence, it can be used to detect submillimeter cracks in a manufacturing line. With a high-frame-rate line-scan camera, this proposed crack technique is designed to theoretically achieve a scanning throughput of less than 1 s per wafer. |
doi_str_mv | 10.1109/JPHOTOV.2018.2866176 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1613437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8458367</ieee_id><sourcerecordid>2126663525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-377af3c29fa9ed53fff13c581132cc9fe008bb031707e1c1a601eee68af7a4793</originalsourceid><addsrcrecordid>eNo9kc1OAyEUhSdGE436BLogup7KhRmYWZrW2hqTmvTHJaEUWiwdKkxN3Pjsoq2yuWfxncs9OVl2DbgDgOu7p5fBaDKadQiGqkMqxoCzo-yMQMlyWmB6_KdpBafZZYxvOD2GS8aKs-yrp6NdNsgbJNF4N99Y5-xGtzqgbpBqnfeSVq31DZp475DxAY0teln51n9410qr0Ks0OkQ0jbZZoplVtpEODZ3bbZL6tcpmgXoyrPO-1W6Bxkq26YeEX2QnRrqoLw_zPJv2HybdQf48ehx2759zRQlrc8q5NFSR2shaL0pqjAGqygqAEqVqozGu5nNMgWOuQYFkGLTWrJKGy4LX9Dy72e_1sbUiKptCrZRvmpRNAANaUJ6g2z20Df59p2Mr3vwupDBRECCMMVqSMlHFnlLBxxi0EdtgNzJ8CsDipxFxaET8NCIOjSTb1d5m02H_lqooK8o4_QbzA4h_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126663525</pqid></control><display><type>article</type><title>Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zhe ; Wieghold, Sarah ; Meyer, Luke T. ; Cavill, Loewen K. ; Buonassisi, Tonio ; Sachs, Emanuel M.</creator><creatorcontrib>Liu, Zhe ; Wieghold, Sarah ; Meyer, Luke T. ; Cavill, Loewen K. ; Buonassisi, Tonio ; Sachs, Emanuel M. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length required for fracture significantly decreases for the same loading conditions. Currently, very few industry-standard tools can reliably detect submillimeter cracks, which will become more critical for thinner wafers. In this work, we demonstrate a technique to detect submillimeter cracks located at the edges of various multicrystalline silicon wafers and solar cells. The proposed technique, which is based on near-infrared dark-field imaging with vicinal laser illumination from the wafer edge, has several advantages over state-of-the-art optical transmission imaging and dark-field scattering techniques. Moreover, we adapt this technique to achieve the high-throughput requirement of inline metrology; hence, it can be used to detect submillimeter cracks in a manufacturing line. With a high-frame-rate line-scan camera, this proposed crack technique is designed to theoretically achieve a scanning throughput of less than 1 s per wafer.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2866176</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic optical inspection ; Breakage ; crack detection ; Cracks ; Dark adaptation ; Energy & Fuels ; Flaw detection ; Fracture mechanics ; high-throughput inspection ; Illumination ; Infrared imaging ; Machine vision ; Manufacturing ; Materials Science ; Microcracks ; Photovoltaic cells ; Photovoltaic systems ; Physics ; Scattering ; Silicon ; Silicon wafers ; Solar cells ; Solar energy ; State of the art ; Wafers</subject><ispartof>IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1449-1456</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-377af3c29fa9ed53fff13c581132cc9fe008bb031707e1c1a601eee68af7a4793</citedby><cites>FETCH-LOGICAL-c326t-377af3c29fa9ed53fff13c581132cc9fe008bb031707e1c1a601eee68af7a4793</cites><orcidid>0000-0001-7268-6214 ; 0000-0002-4217-2076 ; 0000-0001-8345-4937 ; 0000000242172076 ; 0000000172686214 ; 0000000183454937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8458367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8458367$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1613437$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Wieghold, Sarah</creatorcontrib><creatorcontrib>Meyer, Luke T.</creatorcontrib><creatorcontrib>Cavill, Loewen K.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Sachs, Emanuel M.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length required for fracture significantly decreases for the same loading conditions. Currently, very few industry-standard tools can reliably detect submillimeter cracks, which will become more critical for thinner wafers. In this work, we demonstrate a technique to detect submillimeter cracks located at the edges of various multicrystalline silicon wafers and solar cells. The proposed technique, which is based on near-infrared dark-field imaging with vicinal laser illumination from the wafer edge, has several advantages over state-of-the-art optical transmission imaging and dark-field scattering techniques. Moreover, we adapt this technique to achieve the high-throughput requirement of inline metrology; hence, it can be used to detect submillimeter cracks in a manufacturing line. With a high-frame-rate line-scan camera, this proposed crack technique is designed to theoretically achieve a scanning throughput of less than 1 s per wafer.</description><subject>Automatic optical inspection</subject><subject>Breakage</subject><subject>crack detection</subject><subject>Cracks</subject><subject>Dark adaptation</subject><subject>Energy & Fuels</subject><subject>Flaw detection</subject><subject>Fracture mechanics</subject><subject>high-throughput inspection</subject><subject>Illumination</subject><subject>Infrared imaging</subject><subject>Machine vision</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Microcracks</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Physics</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>State of the art</subject><subject>Wafers</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kc1OAyEUhSdGE436BLogup7KhRmYWZrW2hqTmvTHJaEUWiwdKkxN3Pjsoq2yuWfxncs9OVl2DbgDgOu7p5fBaDKadQiGqkMqxoCzo-yMQMlyWmB6_KdpBafZZYxvOD2GS8aKs-yrp6NdNsgbJNF4N99Y5-xGtzqgbpBqnfeSVq31DZp475DxAY0teln51n9410qr0Ks0OkQ0jbZZoplVtpEODZ3bbZL6tcpmgXoyrPO-1W6Bxkq26YeEX2QnRrqoLw_zPJv2HybdQf48ehx2759zRQlrc8q5NFSR2shaL0pqjAGqygqAEqVqozGu5nNMgWOuQYFkGLTWrJKGy4LX9Dy72e_1sbUiKptCrZRvmpRNAANaUJ6g2z20Df59p2Mr3vwupDBRECCMMVqSMlHFnlLBxxi0EdtgNzJ8CsDipxFxaET8NCIOjSTb1d5m02H_lqooK8o4_QbzA4h_</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Liu, Zhe</creator><creator>Wieghold, Sarah</creator><creator>Meyer, Luke T.</creator><creator>Cavill, Loewen K.</creator><creator>Buonassisi, Tonio</creator><creator>Sachs, Emanuel M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7268-6214</orcidid><orcidid>https://orcid.org/0000-0002-4217-2076</orcidid><orcidid>https://orcid.org/0000-0001-8345-4937</orcidid><orcidid>https://orcid.org/0000000242172076</orcidid><orcidid>https://orcid.org/0000000172686214</orcidid><orcidid>https://orcid.org/0000000183454937</orcidid></search><sort><creationdate>20181101</creationdate><title>Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering</title><author>Liu, Zhe ; Wieghold, Sarah ; Meyer, Luke T. ; Cavill, Loewen K. ; Buonassisi, Tonio ; Sachs, Emanuel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-377af3c29fa9ed53fff13c581132cc9fe008bb031707e1c1a601eee68af7a4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automatic optical inspection</topic><topic>Breakage</topic><topic>crack detection</topic><topic>Cracks</topic><topic>Dark adaptation</topic><topic>Energy & Fuels</topic><topic>Flaw detection</topic><topic>Fracture mechanics</topic><topic>high-throughput inspection</topic><topic>Illumination</topic><topic>Infrared imaging</topic><topic>Machine vision</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Microcracks</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Physics</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>State of the art</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Wieghold, Sarah</creatorcontrib><creatorcontrib>Meyer, Luke T.</creatorcontrib><creatorcontrib>Cavill, Loewen K.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Sachs, Emanuel M.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zhe</au><au>Wieghold, Sarah</au><au>Meyer, Luke T.</au><au>Cavill, Loewen K.</au><au>Buonassisi, Tonio</au><au>Sachs, Emanuel M.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>6</issue><spage>1449</spage><epage>1456</epage><pages>1449-1456</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length required for fracture significantly decreases for the same loading conditions. Currently, very few industry-standard tools can reliably detect submillimeter cracks, which will become more critical for thinner wafers. In this work, we demonstrate a technique to detect submillimeter cracks located at the edges of various multicrystalline silicon wafers and solar cells. The proposed technique, which is based on near-infrared dark-field imaging with vicinal laser illumination from the wafer edge, has several advantages over state-of-the-art optical transmission imaging and dark-field scattering techniques. Moreover, we adapt this technique to achieve the high-throughput requirement of inline metrology; hence, it can be used to detect submillimeter cracks in a manufacturing line. With a high-frame-rate line-scan camera, this proposed crack technique is designed to theoretically achieve a scanning throughput of less than 1 s per wafer.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2866176</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7268-6214</orcidid><orcidid>https://orcid.org/0000-0002-4217-2076</orcidid><orcidid>https://orcid.org/0000-0001-8345-4937</orcidid><orcidid>https://orcid.org/0000000242172076</orcidid><orcidid>https://orcid.org/0000000172686214</orcidid><orcidid>https://orcid.org/0000000183454937</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2156-3381 |
ispartof | IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1449-1456 |
issn | 2156-3381 2156-3403 |
language | eng |
recordid | cdi_osti_scitechconnect_1613437 |
source | IEEE Electronic Library (IEL) |
subjects | Automatic optical inspection Breakage crack detection Cracks Dark adaptation Energy & Fuels Flaw detection Fracture mechanics high-throughput inspection Illumination Infrared imaging Machine vision Manufacturing Materials Science Microcracks Photovoltaic cells Photovoltaic systems Physics Scattering Silicon Silicon wafers Solar cells Solar energy State of the art Wafers |
title | Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Submillimeter%20Crack-Detection%20Tool%20for%20Si%20Photovoltaic%20Wafers%20Using%20Vicinal%20Illumination%20and%20Dark-Field%20Scattering&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Liu,%20Zhe&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2018-11-01&rft.volume=8&rft.issue=6&rft.spage=1449&rft.epage=1456&rft.pages=1449-1456&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2866176&rft_dat=%3Cproquest_RIE%3E2126663525%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126663525&rft_id=info:pmid/&rft_ieee_id=8458367&rfr_iscdi=true |