Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering

Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2018-11, Vol.8 (6), p.1449-1456
Hauptverfasser: Liu, Zhe, Wieghold, Sarah, Meyer, Luke T., Cavill, Loewen K., Buonassisi, Tonio, Sachs, Emanuel M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1456
container_issue 6
container_start_page 1449
container_title IEEE journal of photovoltaics
container_volume 8
creator Liu, Zhe
Wieghold, Sarah
Meyer, Luke T.
Cavill, Loewen K.
Buonassisi, Tonio
Sachs, Emanuel M.
description Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length required for fracture significantly decreases for the same loading conditions. Currently, very few industry-standard tools can reliably detect submillimeter cracks, which will become more critical for thinner wafers. In this work, we demonstrate a technique to detect submillimeter cracks located at the edges of various multicrystalline silicon wafers and solar cells. The proposed technique, which is based on near-infrared dark-field imaging with vicinal laser illumination from the wafer edge, has several advantages over state-of-the-art optical transmission imaging and dark-field scattering techniques. Moreover, we adapt this technique to achieve the high-throughput requirement of inline metrology; hence, it can be used to detect submillimeter cracks in a manufacturing line. With a high-frame-rate line-scan camera, this proposed crack technique is designed to theoretically achieve a scanning throughput of less than 1 s per wafer.
doi_str_mv 10.1109/JPHOTOV.2018.2866176
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1613437</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8458367</ieee_id><sourcerecordid>2126663525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-377af3c29fa9ed53fff13c581132cc9fe008bb031707e1c1a601eee68af7a4793</originalsourceid><addsrcrecordid>eNo9kc1OAyEUhSdGE436BLogup7KhRmYWZrW2hqTmvTHJaEUWiwdKkxN3Pjsoq2yuWfxncs9OVl2DbgDgOu7p5fBaDKadQiGqkMqxoCzo-yMQMlyWmB6_KdpBafZZYxvOD2GS8aKs-yrp6NdNsgbJNF4N99Y5-xGtzqgbpBqnfeSVq31DZp475DxAY0teln51n9410qr0Ks0OkQ0jbZZoplVtpEODZ3bbZL6tcpmgXoyrPO-1W6Bxkq26YeEX2QnRrqoLw_zPJv2HybdQf48ehx2759zRQlrc8q5NFSR2shaL0pqjAGqygqAEqVqozGu5nNMgWOuQYFkGLTWrJKGy4LX9Dy72e_1sbUiKptCrZRvmpRNAANaUJ6g2z20Df59p2Mr3vwupDBRECCMMVqSMlHFnlLBxxi0EdtgNzJ8CsDipxFxaET8NCIOjSTb1d5m02H_lqooK8o4_QbzA4h_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2126663525</pqid></control><display><type>article</type><title>Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering</title><source>IEEE Electronic Library (IEL)</source><creator>Liu, Zhe ; Wieghold, Sarah ; Meyer, Luke T. ; Cavill, Loewen K. ; Buonassisi, Tonio ; Sachs, Emanuel M.</creator><creatorcontrib>Liu, Zhe ; Wieghold, Sarah ; Meyer, Luke T. ; Cavill, Loewen K. ; Buonassisi, Tonio ; Sachs, Emanuel M. ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length required for fracture significantly decreases for the same loading conditions. Currently, very few industry-standard tools can reliably detect submillimeter cracks, which will become more critical for thinner wafers. In this work, we demonstrate a technique to detect submillimeter cracks located at the edges of various multicrystalline silicon wafers and solar cells. The proposed technique, which is based on near-infrared dark-field imaging with vicinal laser illumination from the wafer edge, has several advantages over state-of-the-art optical transmission imaging and dark-field scattering techniques. Moreover, we adapt this technique to achieve the high-throughput requirement of inline metrology; hence, it can be used to detect submillimeter cracks in a manufacturing line. With a high-frame-rate line-scan camera, this proposed crack technique is designed to theoretically achieve a scanning throughput of less than 1 s per wafer.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2018.2866176</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Automatic optical inspection ; Breakage ; crack detection ; Cracks ; Dark adaptation ; Energy &amp; Fuels ; Flaw detection ; Fracture mechanics ; high-throughput inspection ; Illumination ; Infrared imaging ; Machine vision ; Manufacturing ; Materials Science ; Microcracks ; Photovoltaic cells ; Photovoltaic systems ; Physics ; Scattering ; Silicon ; Silicon wafers ; Solar cells ; Solar energy ; State of the art ; Wafers</subject><ispartof>IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1449-1456</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-377af3c29fa9ed53fff13c581132cc9fe008bb031707e1c1a601eee68af7a4793</citedby><cites>FETCH-LOGICAL-c326t-377af3c29fa9ed53fff13c581132cc9fe008bb031707e1c1a601eee68af7a4793</cites><orcidid>0000-0001-7268-6214 ; 0000-0002-4217-2076 ; 0000-0001-8345-4937 ; 0000000242172076 ; 0000000172686214 ; 0000000183454937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8458367$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8458367$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1613437$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Wieghold, Sarah</creatorcontrib><creatorcontrib>Meyer, Luke T.</creatorcontrib><creatorcontrib>Cavill, Loewen K.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Sachs, Emanuel M.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length required for fracture significantly decreases for the same loading conditions. Currently, very few industry-standard tools can reliably detect submillimeter cracks, which will become more critical for thinner wafers. In this work, we demonstrate a technique to detect submillimeter cracks located at the edges of various multicrystalline silicon wafers and solar cells. The proposed technique, which is based on near-infrared dark-field imaging with vicinal laser illumination from the wafer edge, has several advantages over state-of-the-art optical transmission imaging and dark-field scattering techniques. Moreover, we adapt this technique to achieve the high-throughput requirement of inline metrology; hence, it can be used to detect submillimeter cracks in a manufacturing line. With a high-frame-rate line-scan camera, this proposed crack technique is designed to theoretically achieve a scanning throughput of less than 1 s per wafer.</description><subject>Automatic optical inspection</subject><subject>Breakage</subject><subject>crack detection</subject><subject>Cracks</subject><subject>Dark adaptation</subject><subject>Energy &amp; Fuels</subject><subject>Flaw detection</subject><subject>Fracture mechanics</subject><subject>high-throughput inspection</subject><subject>Illumination</subject><subject>Infrared imaging</subject><subject>Machine vision</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Microcracks</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic systems</subject><subject>Physics</subject><subject>Scattering</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>State of the art</subject><subject>Wafers</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kc1OAyEUhSdGE436BLogup7KhRmYWZrW2hqTmvTHJaEUWiwdKkxN3Pjsoq2yuWfxncs9OVl2DbgDgOu7p5fBaDKadQiGqkMqxoCzo-yMQMlyWmB6_KdpBafZZYxvOD2GS8aKs-yrp6NdNsgbJNF4N99Y5-xGtzqgbpBqnfeSVq31DZp475DxAY0teln51n9410qr0Ks0OkQ0jbZZoplVtpEODZ3bbZL6tcpmgXoyrPO-1W6Bxkq26YeEX2QnRrqoLw_zPJv2HybdQf48ehx2759zRQlrc8q5NFSR2shaL0pqjAGqygqAEqVqozGu5nNMgWOuQYFkGLTWrJKGy4LX9Dy72e_1sbUiKptCrZRvmpRNAANaUJ6g2z20Df59p2Mr3vwupDBRECCMMVqSMlHFnlLBxxi0EdtgNzJ8CsDipxFxaET8NCIOjSTb1d5m02H_lqooK8o4_QbzA4h_</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Liu, Zhe</creator><creator>Wieghold, Sarah</creator><creator>Meyer, Luke T.</creator><creator>Cavill, Loewen K.</creator><creator>Buonassisi, Tonio</creator><creator>Sachs, Emanuel M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7268-6214</orcidid><orcidid>https://orcid.org/0000-0002-4217-2076</orcidid><orcidid>https://orcid.org/0000-0001-8345-4937</orcidid><orcidid>https://orcid.org/0000000242172076</orcidid><orcidid>https://orcid.org/0000000172686214</orcidid><orcidid>https://orcid.org/0000000183454937</orcidid></search><sort><creationdate>20181101</creationdate><title>Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering</title><author>Liu, Zhe ; Wieghold, Sarah ; Meyer, Luke T. ; Cavill, Loewen K. ; Buonassisi, Tonio ; Sachs, Emanuel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-377af3c29fa9ed53fff13c581132cc9fe008bb031707e1c1a601eee68af7a4793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automatic optical inspection</topic><topic>Breakage</topic><topic>crack detection</topic><topic>Cracks</topic><topic>Dark adaptation</topic><topic>Energy &amp; Fuels</topic><topic>Flaw detection</topic><topic>Fracture mechanics</topic><topic>high-throughput inspection</topic><topic>Illumination</topic><topic>Infrared imaging</topic><topic>Machine vision</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Microcracks</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic systems</topic><topic>Physics</topic><topic>Scattering</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>State of the art</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhe</creatorcontrib><creatorcontrib>Wieghold, Sarah</creatorcontrib><creatorcontrib>Meyer, Luke T.</creatorcontrib><creatorcontrib>Cavill, Loewen K.</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>Sachs, Emanuel M.</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Zhe</au><au>Wieghold, Sarah</au><au>Meyer, Luke T.</au><au>Cavill, Loewen K.</au><au>Buonassisi, Tonio</au><au>Sachs, Emanuel M.</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>8</volume><issue>6</issue><spage>1449</spage><epage>1456</epage><pages>1449-1456</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>Microcracks in silicon solar cells reduce the mechanical strength of the wafer and cause breakage during manufacturing, transportation, and field operation. Therefore, there is a need to trace where microcracks initiate in the manufacturing line. As wafers become thinner, the critical crack length required for fracture significantly decreases for the same loading conditions. Currently, very few industry-standard tools can reliably detect submillimeter cracks, which will become more critical for thinner wafers. In this work, we demonstrate a technique to detect submillimeter cracks located at the edges of various multicrystalline silicon wafers and solar cells. The proposed technique, which is based on near-infrared dark-field imaging with vicinal laser illumination from the wafer edge, has several advantages over state-of-the-art optical transmission imaging and dark-field scattering techniques. Moreover, we adapt this technique to achieve the high-throughput requirement of inline metrology; hence, it can be used to detect submillimeter cracks in a manufacturing line. With a high-frame-rate line-scan camera, this proposed crack technique is designed to theoretically achieve a scanning throughput of less than 1 s per wafer.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2018.2866176</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7268-6214</orcidid><orcidid>https://orcid.org/0000-0002-4217-2076</orcidid><orcidid>https://orcid.org/0000-0001-8345-4937</orcidid><orcidid>https://orcid.org/0000000242172076</orcidid><orcidid>https://orcid.org/0000000172686214</orcidid><orcidid>https://orcid.org/0000000183454937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2018-11, Vol.8 (6), p.1449-1456
issn 2156-3381
2156-3403
language eng
recordid cdi_osti_scitechconnect_1613437
source IEEE Electronic Library (IEL)
subjects Automatic optical inspection
Breakage
crack detection
Cracks
Dark adaptation
Energy & Fuels
Flaw detection
Fracture mechanics
high-throughput inspection
Illumination
Infrared imaging
Machine vision
Manufacturing
Materials Science
Microcracks
Photovoltaic cells
Photovoltaic systems
Physics
Scattering
Silicon
Silicon wafers
Solar cells
Solar energy
State of the art
Wafers
title Design of a Submillimeter Crack-Detection Tool for Si Photovoltaic Wafers Using Vicinal Illumination and Dark-Field Scattering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T09%3A52%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20a%20Submillimeter%20Crack-Detection%20Tool%20for%20Si%20Photovoltaic%20Wafers%20Using%20Vicinal%20Illumination%20and%20Dark-Field%20Scattering&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Liu,%20Zhe&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2018-11-01&rft.volume=8&rft.issue=6&rft.spage=1449&rft.epage=1456&rft.pages=1449-1456&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2018.2866176&rft_dat=%3Cproquest_RIE%3E2126663525%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2126663525&rft_id=info:pmid/&rft_ieee_id=8458367&rfr_iscdi=true