Penetration Depth Reduction with Plasmonic Metafilms

In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS photonics 2019-08, Vol.6 (8), p.2049-2055
Hauptverfasser: Zhao, Nathan Z, Williamson, Ian A. D, Zhao, Zhexin, Boutami, Salim, Fan, Shanhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2055
container_issue 8
container_start_page 2049
container_title ACS photonics
container_volume 6
creator Zhao, Nathan Z
Williamson, Ian A. D
Zhao, Zhexin
Boutami, Salim
Fan, Shanhui
description In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated optics benefit significantly from a small penetration depth. In this paper, we introduce an ultrathin metafilm consisting of alternating regions of metal and dielectric, which has a much smaller penetration depth than that of a corresponding metal thin film. We demonstrate that the reduction of the metafilm’s penetration depth is a direct result of the enhanced effective mass in its photonic band structure. Our results can lead to enhanced device performance in lightweight ultrahigh reflectivity reflectors and to an increased packing density of subwavelength plasmonic channel waveguides.
doi_str_mv 10.1021/acsphotonics.9b00493
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1613129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g10465897</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-abe99433dc1a495319da87fcf0dba33c6032c667c898102f78ae56d8ea8387f73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gYfizUNrkslmN8dS_1SoWETPYZrNsinbTdmkit_e1C3Sk6eZYX7vwXuEXDM6ZZSzOzRhV_voW2fCVK0pFQrOyIAD0ImgnJ-f7JdkFMKGUspoBlKKAREr29rYYXS-Hd_bXazHb7bcm9_7y6Vz1WDYHtzHLzZi5ZptuCIXFTbBjo5zSD4eH97ni8ny9el5PltOEDKIE1xbpQRAaRgKlQFTJRZ5ZSparhHASArcSJmbQhUpSpUXaDNZFhYLSFwOQ3LT-_oQnQ7GRWtq49vWmqiZZMC4StBtD9XY6F3ntth9a49OL2ZLbSxqKnLFc8k_WWJFz5rOh9DZ6k_AqD60qU_b1Mc2k4z2svTVG7_v2pT6f8kPmL565Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Penetration Depth Reduction with Plasmonic Metafilms</title><source>American Chemical Society Journals</source><creator>Zhao, Nathan Z ; Williamson, Ian A. D ; Zhao, Zhexin ; Boutami, Salim ; Fan, Shanhui</creator><creatorcontrib>Zhao, Nathan Z ; Williamson, Ian A. D ; Zhao, Zhexin ; Boutami, Salim ; Fan, Shanhui ; Stanford Univ., CA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL)</creatorcontrib><description>In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated optics benefit significantly from a small penetration depth. In this paper, we introduce an ultrathin metafilm consisting of alternating regions of metal and dielectric, which has a much smaller penetration depth than that of a corresponding metal thin film. We demonstrate that the reduction of the metafilm’s penetration depth is a direct result of the enhanced effective mass in its photonic band structure. Our results can lead to enhanced device performance in lightweight ultrahigh reflectivity reflectors and to an increased packing density of subwavelength plasmonic channel waveguides.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b00493</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Engineering Sciences ; Materials Science ; Micro and nanotechnologies ; Microelectronics ; Optics ; Photonic ; Physics ; Science &amp; Technology - Other Topics</subject><ispartof>ACS photonics, 2019-08, Vol.6 (8), p.2049-2055</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-abe99433dc1a495319da87fcf0dba33c6032c667c898102f78ae56d8ea8387f73</citedby><cites>FETCH-LOGICAL-a353t-abe99433dc1a495319da87fcf0dba33c6032c667c898102f78ae56d8ea8387f73</cites><orcidid>0000-0001-6611-5159 ; 0000-0002-2092-6922 ; 0000-0002-6699-1973 ; 0000000266991973 ; 0000000220926922 ; 0000000166115159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.9b00493$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.9b00493$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04792762$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1613129$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Nathan Z</creatorcontrib><creatorcontrib>Williamson, Ian A. D</creatorcontrib><creatorcontrib>Zhao, Zhexin</creatorcontrib><creatorcontrib>Boutami, Salim</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL)</creatorcontrib><title>Penetration Depth Reduction with Plasmonic Metafilms</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated optics benefit significantly from a small penetration depth. In this paper, we introduce an ultrathin metafilm consisting of alternating regions of metal and dielectric, which has a much smaller penetration depth than that of a corresponding metal thin film. We demonstrate that the reduction of the metafilm’s penetration depth is a direct result of the enhanced effective mass in its photonic band structure. Our results can lead to enhanced device performance in lightweight ultrahigh reflectivity reflectors and to an increased packing density of subwavelength plasmonic channel waveguides.</description><subject>Engineering Sciences</subject><subject>Materials Science</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gYfizUNrkslmN8dS_1SoWETPYZrNsinbTdmkit_e1C3Sk6eZYX7vwXuEXDM6ZZSzOzRhV_voW2fCVK0pFQrOyIAD0ImgnJ-f7JdkFMKGUspoBlKKAREr29rYYXS-Hd_bXazHb7bcm9_7y6Vz1WDYHtzHLzZi5ZptuCIXFTbBjo5zSD4eH97ni8ny9el5PltOEDKIE1xbpQRAaRgKlQFTJRZ5ZSparhHASArcSJmbQhUpSpUXaDNZFhYLSFwOQ3LT-_oQnQ7GRWtq49vWmqiZZMC4StBtD9XY6F3ntth9a49OL2ZLbSxqKnLFc8k_WWJFz5rOh9DZ6k_AqD60qU_b1Mc2k4z2svTVG7_v2pT6f8kPmL565Q</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Zhao, Nathan Z</creator><creator>Williamson, Ian A. D</creator><creator>Zhao, Zhexin</creator><creator>Boutami, Salim</creator><creator>Fan, Shanhui</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6611-5159</orcidid><orcidid>https://orcid.org/0000-0002-2092-6922</orcidid><orcidid>https://orcid.org/0000-0002-6699-1973</orcidid><orcidid>https://orcid.org/0000000266991973</orcidid><orcidid>https://orcid.org/0000000220926922</orcidid><orcidid>https://orcid.org/0000000166115159</orcidid></search><sort><creationdate>20190821</creationdate><title>Penetration Depth Reduction with Plasmonic Metafilms</title><author>Zhao, Nathan Z ; Williamson, Ian A. D ; Zhao, Zhexin ; Boutami, Salim ; Fan, Shanhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-abe99433dc1a495319da87fcf0dba33c6032c667c898102f78ae56d8ea8387f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering Sciences</topic><topic>Materials Science</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Nathan Z</creatorcontrib><creatorcontrib>Williamson, Ian A. D</creatorcontrib><creatorcontrib>Zhao, Zhexin</creatorcontrib><creatorcontrib>Boutami, Salim</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Nathan Z</au><au>Williamson, Ian A. D</au><au>Zhao, Zhexin</au><au>Boutami, Salim</au><au>Fan, Shanhui</au><aucorp>Stanford Univ., CA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penetration Depth Reduction with Plasmonic Metafilms</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2019-08-21</date><risdate>2019</risdate><volume>6</volume><issue>8</issue><spage>2049</spage><epage>2055</epage><pages>2049-2055</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated optics benefit significantly from a small penetration depth. In this paper, we introduce an ultrathin metafilm consisting of alternating regions of metal and dielectric, which has a much smaller penetration depth than that of a corresponding metal thin film. We demonstrate that the reduction of the metafilm’s penetration depth is a direct result of the enhanced effective mass in its photonic band structure. Our results can lead to enhanced device performance in lightweight ultrahigh reflectivity reflectors and to an increased packing density of subwavelength plasmonic channel waveguides.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b00493</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6611-5159</orcidid><orcidid>https://orcid.org/0000-0002-2092-6922</orcidid><orcidid>https://orcid.org/0000-0002-6699-1973</orcidid><orcidid>https://orcid.org/0000000266991973</orcidid><orcidid>https://orcid.org/0000000220926922</orcidid><orcidid>https://orcid.org/0000000166115159</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2330-4022
ispartof ACS photonics, 2019-08, Vol.6 (8), p.2049-2055
issn 2330-4022
2330-4022
language eng
recordid cdi_osti_scitechconnect_1613129
source American Chemical Society Journals
subjects Engineering Sciences
Materials Science
Micro and nanotechnologies
Microelectronics
Optics
Photonic
Physics
Science & Technology - Other Topics
title Penetration Depth Reduction with Plasmonic Metafilms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penetration%20Depth%20Reduction%20with%20Plasmonic%20Metafilms&rft.jtitle=ACS%20photonics&rft.au=Zhao,%20Nathan%20Z&rft.aucorp=Stanford%20Univ.,%20CA%20(United%20States)&rft.date=2019-08-21&rft.volume=6&rft.issue=8&rft.spage=2049&rft.epage=2055&rft.pages=2049-2055&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b00493&rft_dat=%3Cacs_osti_%3Eg10465897%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true