Penetration Depth Reduction with Plasmonic Metafilms
In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated o...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2019-08, Vol.6 (8), p.2049-2055 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2055 |
---|---|
container_issue | 8 |
container_start_page | 2049 |
container_title | ACS photonics |
container_volume | 6 |
creator | Zhao, Nathan Z Williamson, Ian A. D Zhao, Zhexin Boutami, Salim Fan, Shanhui |
description | In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated optics benefit significantly from a small penetration depth. In this paper, we introduce an ultrathin metafilm consisting of alternating regions of metal and dielectric, which has a much smaller penetration depth than that of a corresponding metal thin film. We demonstrate that the reduction of the metafilm’s penetration depth is a direct result of the enhanced effective mass in its photonic band structure. Our results can lead to enhanced device performance in lightweight ultrahigh reflectivity reflectors and to an increased packing density of subwavelength plasmonic channel waveguides. |
doi_str_mv | 10.1021/acsphotonics.9b00493 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1613129</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>g10465897</sourcerecordid><originalsourceid>FETCH-LOGICAL-a353t-abe99433dc1a495319da87fcf0dba33c6032c667c898102f78ae56d8ea8387f73</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gYfizUNrkslmN8dS_1SoWETPYZrNsinbTdmkit_e1C3Sk6eZYX7vwXuEXDM6ZZSzOzRhV_voW2fCVK0pFQrOyIAD0ImgnJ-f7JdkFMKGUspoBlKKAREr29rYYXS-Hd_bXazHb7bcm9_7y6Vz1WDYHtzHLzZi5ZptuCIXFTbBjo5zSD4eH97ni8ny9el5PltOEDKIE1xbpQRAaRgKlQFTJRZ5ZSparhHASArcSJmbQhUpSpUXaDNZFhYLSFwOQ3LT-_oQnQ7GRWtq49vWmqiZZMC4StBtD9XY6F3ntth9a49OL2ZLbSxqKnLFc8k_WWJFz5rOh9DZ6k_AqD60qU_b1Mc2k4z2svTVG7_v2pT6f8kPmL565Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Penetration Depth Reduction with Plasmonic Metafilms</title><source>American Chemical Society Journals</source><creator>Zhao, Nathan Z ; Williamson, Ian A. D ; Zhao, Zhexin ; Boutami, Salim ; Fan, Shanhui</creator><creatorcontrib>Zhao, Nathan Z ; Williamson, Ian A. D ; Zhao, Zhexin ; Boutami, Salim ; Fan, Shanhui ; Stanford Univ., CA (United States) ; Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL)</creatorcontrib><description>In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated optics benefit significantly from a small penetration depth. In this paper, we introduce an ultrathin metafilm consisting of alternating regions of metal and dielectric, which has a much smaller penetration depth than that of a corresponding metal thin film. We demonstrate that the reduction of the metafilm’s penetration depth is a direct result of the enhanced effective mass in its photonic band structure. Our results can lead to enhanced device performance in lightweight ultrahigh reflectivity reflectors and to an increased packing density of subwavelength plasmonic channel waveguides.</description><identifier>ISSN: 2330-4022</identifier><identifier>EISSN: 2330-4022</identifier><identifier>DOI: 10.1021/acsphotonics.9b00493</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Engineering Sciences ; Materials Science ; Micro and nanotechnologies ; Microelectronics ; Optics ; Photonic ; Physics ; Science & Technology - Other Topics</subject><ispartof>ACS photonics, 2019-08, Vol.6 (8), p.2049-2055</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a353t-abe99433dc1a495319da87fcf0dba33c6032c667c898102f78ae56d8ea8387f73</citedby><cites>FETCH-LOGICAL-a353t-abe99433dc1a495319da87fcf0dba33c6032c667c898102f78ae56d8ea8387f73</cites><orcidid>0000-0001-6611-5159 ; 0000-0002-2092-6922 ; 0000-0002-6699-1973 ; 0000000266991973 ; 0000000220926922 ; 0000000166115159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsphotonics.9b00493$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsphotonics.9b00493$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04792762$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1613129$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Nathan Z</creatorcontrib><creatorcontrib>Williamson, Ian A. D</creatorcontrib><creatorcontrib>Zhao, Zhexin</creatorcontrib><creatorcontrib>Boutami, Salim</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL)</creatorcontrib><title>Penetration Depth Reduction with Plasmonic Metafilms</title><title>ACS photonics</title><addtitle>ACS Photonics</addtitle><description>In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated optics benefit significantly from a small penetration depth. In this paper, we introduce an ultrathin metafilm consisting of alternating regions of metal and dielectric, which has a much smaller penetration depth than that of a corresponding metal thin film. We demonstrate that the reduction of the metafilm’s penetration depth is a direct result of the enhanced effective mass in its photonic band structure. Our results can lead to enhanced device performance in lightweight ultrahigh reflectivity reflectors and to an increased packing density of subwavelength plasmonic channel waveguides.</description><subject>Engineering Sciences</subject><subject>Materials Science</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Optics</subject><subject>Photonic</subject><subject>Physics</subject><subject>Science & Technology - Other Topics</subject><issn>2330-4022</issn><issn>2330-4022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gYfizUNrkslmN8dS_1SoWETPYZrNsinbTdmkit_e1C3Sk6eZYX7vwXuEXDM6ZZSzOzRhV_voW2fCVK0pFQrOyIAD0ImgnJ-f7JdkFMKGUspoBlKKAREr29rYYXS-Hd_bXazHb7bcm9_7y6Vz1WDYHtzHLzZi5ZptuCIXFTbBjo5zSD4eH97ni8ny9el5PltOEDKIE1xbpQRAaRgKlQFTJRZ5ZSparhHASArcSJmbQhUpSpUXaDNZFhYLSFwOQ3LT-_oQnQ7GRWtq49vWmqiZZMC4StBtD9XY6F3ntth9a49OL2ZLbSxqKnLFc8k_WWJFz5rOh9DZ6k_AqD60qU_b1Mc2k4z2svTVG7_v2pT6f8kPmL565Q</recordid><startdate>20190821</startdate><enddate>20190821</enddate><creator>Zhao, Nathan Z</creator><creator>Williamson, Ian A. D</creator><creator>Zhao, Zhexin</creator><creator>Boutami, Salim</creator><creator>Fan, Shanhui</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6611-5159</orcidid><orcidid>https://orcid.org/0000-0002-2092-6922</orcidid><orcidid>https://orcid.org/0000-0002-6699-1973</orcidid><orcidid>https://orcid.org/0000000266991973</orcidid><orcidid>https://orcid.org/0000000220926922</orcidid><orcidid>https://orcid.org/0000000166115159</orcidid></search><sort><creationdate>20190821</creationdate><title>Penetration Depth Reduction with Plasmonic Metafilms</title><author>Zhao, Nathan Z ; Williamson, Ian A. D ; Zhao, Zhexin ; Boutami, Salim ; Fan, Shanhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a353t-abe99433dc1a495319da87fcf0dba33c6032c667c898102f78ae56d8ea8387f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Engineering Sciences</topic><topic>Materials Science</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Optics</topic><topic>Photonic</topic><topic>Physics</topic><topic>Science & Technology - Other Topics</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Nathan Z</creatorcontrib><creatorcontrib>Williamson, Ian A. D</creatorcontrib><creatorcontrib>Zhao, Zhexin</creatorcontrib><creatorcontrib>Boutami, Salim</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>ACS photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Nathan Z</au><au>Williamson, Ian A. D</au><au>Zhao, Zhexin</au><au>Boutami, Salim</au><au>Fan, Shanhui</au><aucorp>Stanford Univ., CA (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Photonics at Thermodynamic Limits (PTL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penetration Depth Reduction with Plasmonic Metafilms</atitle><jtitle>ACS photonics</jtitle><addtitle>ACS Photonics</addtitle><date>2019-08-21</date><risdate>2019</risdate><volume>6</volume><issue>8</issue><spage>2049</spage><epage>2055</epage><pages>2049-2055</pages><issn>2330-4022</issn><eissn>2330-4022</eissn><abstract>In many optical systems, such as metal films, dielectric reflectors, and photonic crystals, electromagnetic waves experience evanescent decay. The spatial length scale of such a decay defines the penetration depth, and a number of technologically important applications in free-space and integrated optics benefit significantly from a small penetration depth. In this paper, we introduce an ultrathin metafilm consisting of alternating regions of metal and dielectric, which has a much smaller penetration depth than that of a corresponding metal thin film. We demonstrate that the reduction of the metafilm’s penetration depth is a direct result of the enhanced effective mass in its photonic band structure. Our results can lead to enhanced device performance in lightweight ultrahigh reflectivity reflectors and to an increased packing density of subwavelength plasmonic channel waveguides.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsphotonics.9b00493</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6611-5159</orcidid><orcidid>https://orcid.org/0000-0002-2092-6922</orcidid><orcidid>https://orcid.org/0000-0002-6699-1973</orcidid><orcidid>https://orcid.org/0000000266991973</orcidid><orcidid>https://orcid.org/0000000220926922</orcidid><orcidid>https://orcid.org/0000000166115159</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2330-4022 |
ispartof | ACS photonics, 2019-08, Vol.6 (8), p.2049-2055 |
issn | 2330-4022 2330-4022 |
language | eng |
recordid | cdi_osti_scitechconnect_1613129 |
source | American Chemical Society Journals |
subjects | Engineering Sciences Materials Science Micro and nanotechnologies Microelectronics Optics Photonic Physics Science & Technology - Other Topics |
title | Penetration Depth Reduction with Plasmonic Metafilms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T03%3A20%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penetration%20Depth%20Reduction%20with%20Plasmonic%20Metafilms&rft.jtitle=ACS%20photonics&rft.au=Zhao,%20Nathan%20Z&rft.aucorp=Stanford%20Univ.,%20CA%20(United%20States)&rft.date=2019-08-21&rft.volume=6&rft.issue=8&rft.spage=2049&rft.epage=2055&rft.pages=2049-2055&rft.issn=2330-4022&rft.eissn=2330-4022&rft_id=info:doi/10.1021/acsphotonics.9b00493&rft_dat=%3Cacs_osti_%3Eg10465897%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |