Leggett mode controlled by light pulses

The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors 1 , 2 , has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2019-04, Vol.15 (4), p.341-346
Hauptverfasser: Giorgianni, Flavio, Cea, Tommaso, Vicario, Carlo, Hauri, Christoph P., Withanage, Wenura K., Xi, Xiaoxing, Benfatto, Lara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 4
container_start_page 341
container_title Nature physics
container_volume 15
creator Giorgianni, Flavio
Cea, Tommaso
Vicario, Carlo
Hauri, Christoph P.
Withanage, Wenura K.
Xi, Xiaoxing
Benfatto, Lara
description The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors 1 , 2 , has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters 3 , 4 . Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters—the so-called Leggett mode—in the multiband superconductor MgB 2 . The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter. There has latterly been a renewed interest in collective excitations in condensed matter systems. Now, spectroscopic evidence for the so-called Leggett mode is revealed in the superconductor MgB 2 .
doi_str_mv 10.1038/s41567-018-0385-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1611632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201701080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-69e59cc08b33f75cc12f78361d64347274477ad06fd5155f7e8d82f8b1c89dcd3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2gC1fR3Ly7lOILCm50Hdo8plOmk5qki_57U0Z05eqeC985HA5C10DugTD9kDkIqTABjesrMD9BE1BcYMo1nP5qxc7RRc4bQjiVwCbobuHb1pfSbKPzjY1DSbHvvWtWh6bv2nVpdvs--3yJzsKyiqufO0Wfz08f81e8eH95mz8usGWcFSxnXsysJXrFWFDCWqBBaSbBSc64oopzpZaOyOAECBGU107ToFdg9cxZx6boZsyNuXQm2654u661Bm-LAQkgGa3Q7QjtUvza-1zMJu7TUHsZSgkoAkSTSsFI2RRzTj6YXeq2y3QwQMxxNDOOZupo5jia4dVDR0-u7ND69Jf8v-kblnRsew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201701080</pqid></control><display><type>article</type><title>Leggett mode controlled by light pulses</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Giorgianni, Flavio ; Cea, Tommaso ; Vicario, Carlo ; Hauri, Christoph P. ; Withanage, Wenura K. ; Xi, Xiaoxing ; Benfatto, Lara</creator><creatorcontrib>Giorgianni, Flavio ; Cea, Tommaso ; Vicario, Carlo ; Hauri, Christoph P. ; Withanage, Wenura K. ; Xi, Xiaoxing ; Benfatto, Lara ; Temple Univ., Philadelphia, PA (United States)</creatorcontrib><description>The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors 1 , 2 , has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters 3 , 4 . Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters—the so-called Leggett mode—in the multiband superconductor MgB 2 . The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter. There has latterly been a renewed interest in collective excitations in condensed matter systems. Now, spectroscopic evidence for the so-called Leggett mode is revealed in the superconductor MgB 2 .</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-018-0385-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/624/400/561 ; 639/766/119/2795 ; Active control ; Atomic ; Borides ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Electric fields ; Electromagnetism ; Excitation ; Letter ; Magnesium compounds ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Order parameters ; Physics ; Physics and Astronomy ; Spectrum analysis ; Symmetry ; Theoretical ; Thin films ; Variation</subject><ispartof>Nature physics, 2019-04, Vol.15 (4), p.341-346</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-69e59cc08b33f75cc12f78361d64347274477ad06fd5155f7e8d82f8b1c89dcd3</citedby><cites>FETCH-LOGICAL-c343t-69e59cc08b33f75cc12f78361d64347274477ad06fd5155f7e8d82f8b1c89dcd3</cites><orcidid>0000-0002-6091-3552 ; 0000000260913552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-018-0385-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-018-0385-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1611632$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Giorgianni, Flavio</creatorcontrib><creatorcontrib>Cea, Tommaso</creatorcontrib><creatorcontrib>Vicario, Carlo</creatorcontrib><creatorcontrib>Hauri, Christoph P.</creatorcontrib><creatorcontrib>Withanage, Wenura K.</creatorcontrib><creatorcontrib>Xi, Xiaoxing</creatorcontrib><creatorcontrib>Benfatto, Lara</creatorcontrib><creatorcontrib>Temple Univ., Philadelphia, PA (United States)</creatorcontrib><title>Leggett mode controlled by light pulses</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors 1 , 2 , has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters 3 , 4 . Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters—the so-called Leggett mode—in the multiband superconductor MgB 2 . The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter. There has latterly been a renewed interest in collective excitations in condensed matter systems. Now, spectroscopic evidence for the so-called Leggett mode is revealed in the superconductor MgB 2 .</description><subject>639/301/119/1003</subject><subject>639/624/400/561</subject><subject>639/766/119/2795</subject><subject>Active control</subject><subject>Atomic</subject><subject>Borides</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electric fields</subject><subject>Electromagnetism</subject><subject>Excitation</subject><subject>Letter</subject><subject>Magnesium compounds</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Order parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spectrum analysis</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Thin films</subject><subject>Variation</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2gC1fR3Ly7lOILCm50Hdo8plOmk5qki_57U0Z05eqeC985HA5C10DugTD9kDkIqTABjesrMD9BE1BcYMo1nP5qxc7RRc4bQjiVwCbobuHb1pfSbKPzjY1DSbHvvWtWh6bv2nVpdvs--3yJzsKyiqufO0Wfz08f81e8eH95mz8usGWcFSxnXsysJXrFWFDCWqBBaSbBSc64oopzpZaOyOAECBGU107ToFdg9cxZx6boZsyNuXQm2654u661Bm-LAQkgGa3Q7QjtUvza-1zMJu7TUHsZSgkoAkSTSsFI2RRzTj6YXeq2y3QwQMxxNDOOZupo5jia4dVDR0-u7ND69Jf8v-kblnRsew</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Giorgianni, Flavio</creator><creator>Cea, Tommaso</creator><creator>Vicario, Carlo</creator><creator>Hauri, Christoph P.</creator><creator>Withanage, Wenura K.</creator><creator>Xi, Xiaoxing</creator><creator>Benfatto, Lara</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6091-3552</orcidid><orcidid>https://orcid.org/0000000260913552</orcidid></search><sort><creationdate>20190401</creationdate><title>Leggett mode controlled by light pulses</title><author>Giorgianni, Flavio ; Cea, Tommaso ; Vicario, Carlo ; Hauri, Christoph P. ; Withanage, Wenura K. ; Xi, Xiaoxing ; Benfatto, Lara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-69e59cc08b33f75cc12f78361d64347274477ad06fd5155f7e8d82f8b1c89dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/1003</topic><topic>639/624/400/561</topic><topic>639/766/119/2795</topic><topic>Active control</topic><topic>Atomic</topic><topic>Borides</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electric fields</topic><topic>Electromagnetism</topic><topic>Excitation</topic><topic>Letter</topic><topic>Magnesium compounds</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Order parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spectrum analysis</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Thin films</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giorgianni, Flavio</creatorcontrib><creatorcontrib>Cea, Tommaso</creatorcontrib><creatorcontrib>Vicario, Carlo</creatorcontrib><creatorcontrib>Hauri, Christoph P.</creatorcontrib><creatorcontrib>Withanage, Wenura K.</creatorcontrib><creatorcontrib>Xi, Xiaoxing</creatorcontrib><creatorcontrib>Benfatto, Lara</creatorcontrib><creatorcontrib>Temple Univ., Philadelphia, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giorgianni, Flavio</au><au>Cea, Tommaso</au><au>Vicario, Carlo</au><au>Hauri, Christoph P.</au><au>Withanage, Wenura K.</au><au>Xi, Xiaoxing</au><au>Benfatto, Lara</au><aucorp>Temple Univ., Philadelphia, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leggett mode controlled by light pulses</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>341</spage><epage>346</epage><pages>341-346</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors 1 , 2 , has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters 3 , 4 . Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters—the so-called Leggett mode—in the multiband superconductor MgB 2 . The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter. There has latterly been a renewed interest in collective excitations in condensed matter systems. Now, spectroscopic evidence for the so-called Leggett mode is revealed in the superconductor MgB 2 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0385-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6091-3552</orcidid><orcidid>https://orcid.org/0000000260913552</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2019-04, Vol.15 (4), p.341-346
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1611632
source SpringerLink Journals; Nature Journals Online
subjects 639/301/119/1003
639/624/400/561
639/766/119/2795
Active control
Atomic
Borides
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Electric fields
Electromagnetism
Excitation
Letter
Magnesium compounds
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Order parameters
Physics
Physics and Astronomy
Spectrum analysis
Symmetry
Theoretical
Thin films
Variation
title Leggett mode controlled by light pulses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leggett%20mode%20controlled%20by%20light%20pulses&rft.jtitle=Nature%20physics&rft.au=Giorgianni,%20Flavio&rft.aucorp=Temple%20Univ.,%20Philadelphia,%20PA%20(United%20States)&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=341&rft.epage=346&rft.pages=341-346&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0385-4&rft_dat=%3Cproquest_osti_%3E2201701080%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201701080&rft_id=info:pmid/&rfr_iscdi=true