Leggett mode controlled by light pulses
The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors 1 , 2 , has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corr...
Gespeichert in:
Veröffentlicht in: | Nature physics 2019-04, Vol.15 (4), p.341-346 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 4 |
container_start_page | 341 |
container_title | Nature physics |
container_volume | 15 |
creator | Giorgianni, Flavio Cea, Tommaso Vicario, Carlo Hauri, Christoph P. Withanage, Wenura K. Xi, Xiaoxing Benfatto, Lara |
description | The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors
1
,
2
, has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters
3
,
4
. Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters—the so-called Leggett mode—in the multiband superconductor MgB
2
. The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter.
There has latterly been a renewed interest in collective excitations in condensed matter systems. Now, spectroscopic evidence for the so-called Leggett mode is revealed in the superconductor MgB
2
. |
doi_str_mv | 10.1038/s41567-018-0385-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1611632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2201701080</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-69e59cc08b33f75cc12f78361d64347274477ad06fd5155f7e8d82f8b1c89dcd3</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2gC1fR3Ly7lOILCm50Hdo8plOmk5qki_57U0Z05eqeC985HA5C10DugTD9kDkIqTABjesrMD9BE1BcYMo1nP5qxc7RRc4bQjiVwCbobuHb1pfSbKPzjY1DSbHvvWtWh6bv2nVpdvs--3yJzsKyiqufO0Wfz08f81e8eH95mz8usGWcFSxnXsysJXrFWFDCWqBBaSbBSc64oopzpZaOyOAECBGU107ToFdg9cxZx6boZsyNuXQm2654u661Bm-LAQkgGa3Q7QjtUvza-1zMJu7TUHsZSgkoAkSTSsFI2RRzTj6YXeq2y3QwQMxxNDOOZupo5jia4dVDR0-u7ND69Jf8v-kblnRsew</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2201701080</pqid></control><display><type>article</type><title>Leggett mode controlled by light pulses</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Giorgianni, Flavio ; Cea, Tommaso ; Vicario, Carlo ; Hauri, Christoph P. ; Withanage, Wenura K. ; Xi, Xiaoxing ; Benfatto, Lara</creator><creatorcontrib>Giorgianni, Flavio ; Cea, Tommaso ; Vicario, Carlo ; Hauri, Christoph P. ; Withanage, Wenura K. ; Xi, Xiaoxing ; Benfatto, Lara ; Temple Univ., Philadelphia, PA (United States)</creatorcontrib><description>The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors
1
,
2
, has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters
3
,
4
. Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters—the so-called Leggett mode—in the multiband superconductor MgB
2
. The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter.
There has latterly been a renewed interest in collective excitations in condensed matter systems. Now, spectroscopic evidence for the so-called Leggett mode is revealed in the superconductor MgB
2
.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-018-0385-4</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/1003 ; 639/624/400/561 ; 639/766/119/2795 ; Active control ; Atomic ; Borides ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Electric fields ; Electromagnetism ; Excitation ; Letter ; Magnesium compounds ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Order parameters ; Physics ; Physics and Astronomy ; Spectrum analysis ; Symmetry ; Theoretical ; Thin films ; Variation</subject><ispartof>Nature physics, 2019-04, Vol.15 (4), p.341-346</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-69e59cc08b33f75cc12f78361d64347274477ad06fd5155f7e8d82f8b1c89dcd3</citedby><cites>FETCH-LOGICAL-c343t-69e59cc08b33f75cc12f78361d64347274477ad06fd5155f7e8d82f8b1c89dcd3</cites><orcidid>0000-0002-6091-3552 ; 0000000260913552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-018-0385-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-018-0385-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1611632$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Giorgianni, Flavio</creatorcontrib><creatorcontrib>Cea, Tommaso</creatorcontrib><creatorcontrib>Vicario, Carlo</creatorcontrib><creatorcontrib>Hauri, Christoph P.</creatorcontrib><creatorcontrib>Withanage, Wenura K.</creatorcontrib><creatorcontrib>Xi, Xiaoxing</creatorcontrib><creatorcontrib>Benfatto, Lara</creatorcontrib><creatorcontrib>Temple Univ., Philadelphia, PA (United States)</creatorcontrib><title>Leggett mode controlled by light pulses</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors
1
,
2
, has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters
3
,
4
. Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters—the so-called Leggett mode—in the multiband superconductor MgB
2
. The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter.
There has latterly been a renewed interest in collective excitations in condensed matter systems. Now, spectroscopic evidence for the so-called Leggett mode is revealed in the superconductor MgB
2
.</description><subject>639/301/119/1003</subject><subject>639/624/400/561</subject><subject>639/766/119/2795</subject><subject>Active control</subject><subject>Atomic</subject><subject>Borides</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Electric fields</subject><subject>Electromagnetism</subject><subject>Excitation</subject><subject>Letter</subject><subject>Magnesium compounds</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Order parameters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spectrum analysis</subject><subject>Symmetry</subject><subject>Theoretical</subject><subject>Thin films</subject><subject>Variation</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN2gC1fR3Ly7lOILCm50Hdo8plOmk5qki_57U0Z05eqeC985HA5C10DugTD9kDkIqTABjesrMD9BE1BcYMo1nP5qxc7RRc4bQjiVwCbobuHb1pfSbKPzjY1DSbHvvWtWh6bv2nVpdvs--3yJzsKyiqufO0Wfz08f81e8eH95mz8usGWcFSxnXsysJXrFWFDCWqBBaSbBSc64oopzpZaOyOAECBGU107ToFdg9cxZx6boZsyNuXQm2654u661Bm-LAQkgGa3Q7QjtUvza-1zMJu7TUHsZSgkoAkSTSsFI2RRzTj6YXeq2y3QwQMxxNDOOZupo5jia4dVDR0-u7ND69Jf8v-kblnRsew</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Giorgianni, Flavio</creator><creator>Cea, Tommaso</creator><creator>Vicario, Carlo</creator><creator>Hauri, Christoph P.</creator><creator>Withanage, Wenura K.</creator><creator>Xi, Xiaoxing</creator><creator>Benfatto, Lara</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6091-3552</orcidid><orcidid>https://orcid.org/0000000260913552</orcidid></search><sort><creationdate>20190401</creationdate><title>Leggett mode controlled by light pulses</title><author>Giorgianni, Flavio ; Cea, Tommaso ; Vicario, Carlo ; Hauri, Christoph P. ; Withanage, Wenura K. ; Xi, Xiaoxing ; Benfatto, Lara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-69e59cc08b33f75cc12f78361d64347274477ad06fd5155f7e8d82f8b1c89dcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/119/1003</topic><topic>639/624/400/561</topic><topic>639/766/119/2795</topic><topic>Active control</topic><topic>Atomic</topic><topic>Borides</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Electric fields</topic><topic>Electromagnetism</topic><topic>Excitation</topic><topic>Letter</topic><topic>Magnesium compounds</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Order parameters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spectrum analysis</topic><topic>Symmetry</topic><topic>Theoretical</topic><topic>Thin films</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giorgianni, Flavio</creatorcontrib><creatorcontrib>Cea, Tommaso</creatorcontrib><creatorcontrib>Vicario, Carlo</creatorcontrib><creatorcontrib>Hauri, Christoph P.</creatorcontrib><creatorcontrib>Withanage, Wenura K.</creatorcontrib><creatorcontrib>Xi, Xiaoxing</creatorcontrib><creatorcontrib>Benfatto, Lara</creatorcontrib><creatorcontrib>Temple Univ., Philadelphia, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giorgianni, Flavio</au><au>Cea, Tommaso</au><au>Vicario, Carlo</au><au>Hauri, Christoph P.</au><au>Withanage, Wenura K.</au><au>Xi, Xiaoxing</au><au>Benfatto, Lara</au><aucorp>Temple Univ., Philadelphia, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leggett mode controlled by light pulses</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>15</volume><issue>4</issue><spage>341</spage><epage>346</epage><pages>341-346</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>The discovery of symmetry-broken phases that host multiple order parameters, such as multiband superconductors
1
,
2
, has triggered an enormous interest in condensed matter physics. However, many challenges continue to hinder the fundamental understanding of how to control the collective modes corresponding to these multiple order parameters
3
,
4
. Here we demonstrate that, in full analogy with phonons, Raman-active electronic collective modes can be manipulated by intense light pulses. By tuning a sum-frequency excitation process, we selectively trigger collective excitations that can be ascribed to the relative phase fluctuations between two superconducting order parameters—the so-called Leggett mode—in the multiband superconductor MgB
2
. The excellent comparison between experiments and theory establishes a general protocol for the advanced control of Raman-active electronic modes in symmetry-broken quantum phases of matter.
There has latterly been a renewed interest in collective excitations in condensed matter systems. Now, spectroscopic evidence for the so-called Leggett mode is revealed in the superconductor MgB
2
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-018-0385-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6091-3552</orcidid><orcidid>https://orcid.org/0000000260913552</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2019-04, Vol.15 (4), p.341-346 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_osti_scitechconnect_1611632 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 639/301/119/1003 639/624/400/561 639/766/119/2795 Active control Atomic Borides Classical and Continuum Physics Complex Systems Condensed Matter Physics Electric fields Electromagnetism Excitation Letter Magnesium compounds Mathematical and Computational Physics Molecular Optical and Plasma Physics Order parameters Physics Physics and Astronomy Spectrum analysis Symmetry Theoretical Thin films Variation |
title | Leggett mode controlled by light pulses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A47%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leggett%20mode%20controlled%20by%20light%20pulses&rft.jtitle=Nature%20physics&rft.au=Giorgianni,%20Flavio&rft.aucorp=Temple%20Univ.,%20Philadelphia,%20PA%20(United%20States)&rft.date=2019-04-01&rft.volume=15&rft.issue=4&rft.spage=341&rft.epage=346&rft.pages=341-346&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-018-0385-4&rft_dat=%3Cproquest_osti_%3E2201701080%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2201701080&rft_id=info:pmid/&rfr_iscdi=true |