Quantum coherent control of H3+ formation in strong fields

Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2019-01, Vol.150 (4), p.044303-044303
Hauptverfasser: Michie, Matthew J., Ekanayake, Nagitha, Weingartz, Nicholas P., Stamm, Jacob, Dantus, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 044303
container_issue 4
container_start_page 044303
container_title The Journal of chemical physics
container_volume 150
creator Michie, Matthew J.
Ekanayake, Nagitha
Weingartz, Nicholas P.
Stamm, Jacob
Dantus, Marcos
description Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3+ when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.
doi_str_mv 10.1063/1.5070067
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1610694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169981783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-9b0d3f3f25a265810ad8e4df53850a243eb4b64af36bbd17aa55f3f4ba4245603</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w6MUPtk4-d9ebFLVCQQQ9h-xuYrdsk5pkBf-9qS0IHj3NwDwMMy9CpxgmGAS9wRMOBYAo9tAIQ1nlhahgH40ACM4rAeIQHYWwBABcEDZCty-DsnFYZY1baK9tTI2N3vWZM9mMXmfG-ZWKnbNZZ7OQJvY9M53u23CMDozqgz7Z1TF6e7h_nc7y-fPj0_RunjcUSMyrGlpqqCFcEcFLDKotNWsNpyUHRRjVNasFU4aKum5xoRTnibNaMcK4ADpGZ9u9LsROhqaLulmkK61uosQivV2xhC62aO3dx6BDlKsuNLrvldVuCJLgouKEAsaJnv-hSzd4m15ISlRViYuSJnW5VY13IXht5Np3K-W_JAa5iVpiuYs62aut3Rz3E9b_8Kfzv1CuW0O_AYOyibs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169981783</pqid></control><display><type>article</type><title>Quantum coherent control of H3+ formation in strong fields</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Michie, Matthew J. ; Ekanayake, Nagitha ; Weingartz, Nicholas P. ; Stamm, Jacob ; Dantus, Marcos</creator><creatorcontrib>Michie, Matthew J. ; Ekanayake, Nagitha ; Weingartz, Nicholas P. ; Stamm, Jacob ; Dantus, Marcos ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3+ when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5070067</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemistry ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Excitation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lasers ; Physics ; Stability</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (4), p.044303-044303</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-9b0d3f3f25a265810ad8e4df53850a243eb4b64af36bbd17aa55f3f4ba4245603</citedby><cites>FETCH-LOGICAL-c302t-9b0d3f3f25a265810ad8e4df53850a243eb4b64af36bbd17aa55f3f4ba4245603</cites><orcidid>0000-0003-4151-5441 ; 0000-0002-2236-8696 ; 0000-0002-4299-5961 ; 0000000341515441 ; 0000000222368696 ; 0000000242995961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5070067$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1610694$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Michie, Matthew J.</creatorcontrib><creatorcontrib>Ekanayake, Nagitha</creatorcontrib><creatorcontrib>Weingartz, Nicholas P.</creatorcontrib><creatorcontrib>Stamm, Jacob</creatorcontrib><creatorcontrib>Dantus, Marcos</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Quantum coherent control of H3+ formation in strong fields</title><title>The Journal of chemical physics</title><description>Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3+ when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.</description><subject>Chemistry</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Excitation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lasers</subject><subject>Physics</subject><subject>Stability</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w6MUPtk4-d9ebFLVCQQQ9h-xuYrdsk5pkBf-9qS0IHj3NwDwMMy9CpxgmGAS9wRMOBYAo9tAIQ1nlhahgH40ACM4rAeIQHYWwBABcEDZCty-DsnFYZY1baK9tTI2N3vWZM9mMXmfG-ZWKnbNZZ7OQJvY9M53u23CMDozqgz7Z1TF6e7h_nc7y-fPj0_RunjcUSMyrGlpqqCFcEcFLDKotNWsNpyUHRRjVNasFU4aKum5xoRTnibNaMcK4ADpGZ9u9LsROhqaLulmkK61uosQivV2xhC62aO3dx6BDlKsuNLrvldVuCJLgouKEAsaJnv-hSzd4m15ISlRViYuSJnW5VY13IXht5Np3K-W_JAa5iVpiuYs62aut3Rz3E9b_8Kfzv1CuW0O_AYOyibs</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Michie, Matthew J.</creator><creator>Ekanayake, Nagitha</creator><creator>Weingartz, Nicholas P.</creator><creator>Stamm, Jacob</creator><creator>Dantus, Marcos</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4151-5441</orcidid><orcidid>https://orcid.org/0000-0002-2236-8696</orcidid><orcidid>https://orcid.org/0000-0002-4299-5961</orcidid><orcidid>https://orcid.org/0000000341515441</orcidid><orcidid>https://orcid.org/0000000222368696</orcidid><orcidid>https://orcid.org/0000000242995961</orcidid></search><sort><creationdate>20190128</creationdate><title>Quantum coherent control of H3+ formation in strong fields</title><author>Michie, Matthew J. ; Ekanayake, Nagitha ; Weingartz, Nicholas P. ; Stamm, Jacob ; Dantus, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-9b0d3f3f25a265810ad8e4df53850a243eb4b64af36bbd17aa55f3f4ba4245603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Excitation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lasers</topic><topic>Physics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michie, Matthew J.</creatorcontrib><creatorcontrib>Ekanayake, Nagitha</creatorcontrib><creatorcontrib>Weingartz, Nicholas P.</creatorcontrib><creatorcontrib>Stamm, Jacob</creatorcontrib><creatorcontrib>Dantus, Marcos</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michie, Matthew J.</au><au>Ekanayake, Nagitha</au><au>Weingartz, Nicholas P.</au><au>Stamm, Jacob</au><au>Dantus, Marcos</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum coherent control of H3+ formation in strong fields</atitle><jtitle>The Journal of chemical physics</jtitle><date>2019-01-28</date><risdate>2019</risdate><volume>150</volume><issue>4</issue><spage>044303</spage><epage>044303</epage><pages>044303-044303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3+ when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5070067</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4151-5441</orcidid><orcidid>https://orcid.org/0000-0002-2236-8696</orcidid><orcidid>https://orcid.org/0000-0002-4299-5961</orcidid><orcidid>https://orcid.org/0000000341515441</orcidid><orcidid>https://orcid.org/0000000222368696</orcidid><orcidid>https://orcid.org/0000000242995961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2019-01, Vol.150 (4), p.044303-044303
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1610694
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chemistry
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Excitation
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Lasers
Physics
Stability
title Quantum coherent control of H3+ formation in strong fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20coherent%20control%20of%20H3+%20formation%20in%20strong%20fields&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Michie,%20Matthew%20J.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2019-01-28&rft.volume=150&rft.issue=4&rft.spage=044303&rft.epage=044303&rft.pages=044303-044303&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5070067&rft_dat=%3Cproquest_osti_%3E2169981783%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169981783&rft_id=info:pmid/&rfr_iscdi=true