Quantum coherent control of H3+ formation in strong fields
Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2019-01, Vol.150 (4), p.044303-044303 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 044303 |
---|---|
container_issue | 4 |
container_start_page | 044303 |
container_title | The Journal of chemical physics |
container_volume | 150 |
creator | Michie, Matthew J. Ekanayake, Nagitha Weingartz, Nicholas P. Stamm, Jacob Dantus, Marcos |
description | Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3+ when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses. |
doi_str_mv | 10.1063/1.5070067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1610694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2169981783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-9b0d3f3f25a265810ad8e4df53850a243eb4b64af36bbd17aa55f3f4ba4245603</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX-w6MUPtk4-d9ebFLVCQQQ9h-xuYrdsk5pkBf-9qS0IHj3NwDwMMy9CpxgmGAS9wRMOBYAo9tAIQ1nlhahgH40ACM4rAeIQHYWwBABcEDZCty-DsnFYZY1baK9tTI2N3vWZM9mMXmfG-ZWKnbNZZ7OQJvY9M53u23CMDozqgz7Z1TF6e7h_nc7y-fPj0_RunjcUSMyrGlpqqCFcEcFLDKotNWsNpyUHRRjVNasFU4aKum5xoRTnibNaMcK4ADpGZ9u9LsROhqaLulmkK61uosQivV2xhC62aO3dx6BDlKsuNLrvldVuCJLgouKEAsaJnv-hSzd4m15ISlRViYuSJnW5VY13IXht5Np3K-W_JAa5iVpiuYs62aut3Rz3E9b_8Kfzv1CuW0O_AYOyibs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2169981783</pqid></control><display><type>article</type><title>Quantum coherent control of H3+ formation in strong fields</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Michie, Matthew J. ; Ekanayake, Nagitha ; Weingartz, Nicholas P. ; Stamm, Jacob ; Dantus, Marcos</creator><creatorcontrib>Michie, Matthew J. ; Ekanayake, Nagitha ; Weingartz, Nicholas P. ; Stamm, Jacob ; Dantus, Marcos ; Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><description>Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3+ when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5070067</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Chemistry ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Excitation ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lasers ; Physics ; Stability</subject><ispartof>The Journal of chemical physics, 2019-01, Vol.150 (4), p.044303-044303</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-9b0d3f3f25a265810ad8e4df53850a243eb4b64af36bbd17aa55f3f4ba4245603</citedby><cites>FETCH-LOGICAL-c302t-9b0d3f3f25a265810ad8e4df53850a243eb4b64af36bbd17aa55f3f4ba4245603</cites><orcidid>0000-0003-4151-5441 ; 0000-0002-2236-8696 ; 0000-0002-4299-5961 ; 0000000341515441 ; 0000000222368696 ; 0000000242995961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5070067$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1610694$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Michie, Matthew J.</creatorcontrib><creatorcontrib>Ekanayake, Nagitha</creatorcontrib><creatorcontrib>Weingartz, Nicholas P.</creatorcontrib><creatorcontrib>Stamm, Jacob</creatorcontrib><creatorcontrib>Dantus, Marcos</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><title>Quantum coherent control of H3+ formation in strong fields</title><title>The Journal of chemical physics</title><description>Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3+ when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.</description><subject>Chemistry</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Excitation</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lasers</subject><subject>Physics</subject><subject>Stability</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX-w6MUPtk4-d9ebFLVCQQQ9h-xuYrdsk5pkBf-9qS0IHj3NwDwMMy9CpxgmGAS9wRMOBYAo9tAIQ1nlhahgH40ACM4rAeIQHYWwBABcEDZCty-DsnFYZY1baK9tTI2N3vWZM9mMXmfG-ZWKnbNZZ7OQJvY9M53u23CMDozqgz7Z1TF6e7h_nc7y-fPj0_RunjcUSMyrGlpqqCFcEcFLDKotNWsNpyUHRRjVNasFU4aKum5xoRTnibNaMcK4ADpGZ9u9LsROhqaLulmkK61uosQivV2xhC62aO3dx6BDlKsuNLrvldVuCJLgouKEAsaJnv-hSzd4m15ISlRViYuSJnW5VY13IXht5Np3K-W_JAa5iVpiuYs62aut3Rz3E9b_8Kfzv1CuW0O_AYOyibs</recordid><startdate>20190128</startdate><enddate>20190128</enddate><creator>Michie, Matthew J.</creator><creator>Ekanayake, Nagitha</creator><creator>Weingartz, Nicholas P.</creator><creator>Stamm, Jacob</creator><creator>Dantus, Marcos</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4151-5441</orcidid><orcidid>https://orcid.org/0000-0002-2236-8696</orcidid><orcidid>https://orcid.org/0000-0002-4299-5961</orcidid><orcidid>https://orcid.org/0000000341515441</orcidid><orcidid>https://orcid.org/0000000222368696</orcidid><orcidid>https://orcid.org/0000000242995961</orcidid></search><sort><creationdate>20190128</creationdate><title>Quantum coherent control of H3+ formation in strong fields</title><author>Michie, Matthew J. ; Ekanayake, Nagitha ; Weingartz, Nicholas P. ; Stamm, Jacob ; Dantus, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-9b0d3f3f25a265810ad8e4df53850a243eb4b64af36bbd17aa55f3f4ba4245603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Excitation</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lasers</topic><topic>Physics</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michie, Matthew J.</creatorcontrib><creatorcontrib>Ekanayake, Nagitha</creatorcontrib><creatorcontrib>Weingartz, Nicholas P.</creatorcontrib><creatorcontrib>Stamm, Jacob</creatorcontrib><creatorcontrib>Dantus, Marcos</creatorcontrib><creatorcontrib>Michigan State Univ., East Lansing, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michie, Matthew J.</au><au>Ekanayake, Nagitha</au><au>Weingartz, Nicholas P.</au><au>Stamm, Jacob</au><au>Dantus, Marcos</au><aucorp>Michigan State Univ., East Lansing, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum coherent control of H3+ formation in strong fields</atitle><jtitle>The Journal of chemical physics</jtitle><date>2019-01-28</date><risdate>2019</risdate><volume>150</volume><issue>4</issue><spage>044303</spage><epage>044303</epage><pages>044303-044303</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Quantum coherent control (QCC) has been successfully demonstrated experimentally and theoretically for two- and three-photon optical excitation of atoms and molecules. Here, we explore QCC using spectral phase functions with a single spectral phase step for controlling the yield of H3+ from methanol under strong laser field excitation. We observe a significant and systematic enhanced production of H3+ when a negative 34 π phase step is applied near the low energy region of the laser spectrum and when a positive 34 π phase step is applied near the high energy region of the laser spectrum. In some cases, most notably the HCO+ fragment, we found the enhancement exceeded the yield measured for transform limited pulses. The observation of enhanced yield is surprising and far from the QCC prediction of yield suppression. The observed QCC enhancement implies an underlying strong field process responsible for polyatomic fragmentation controllable by easy to reproduce shaped pulses.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5070067</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4151-5441</orcidid><orcidid>https://orcid.org/0000-0002-2236-8696</orcidid><orcidid>https://orcid.org/0000-0002-4299-5961</orcidid><orcidid>https://orcid.org/0000000341515441</orcidid><orcidid>https://orcid.org/0000000222368696</orcidid><orcidid>https://orcid.org/0000000242995961</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2019-01, Vol.150 (4), p.044303-044303 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_1610694 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Chemistry CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Excitation INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Lasers Physics Stability |
title | Quantum coherent control of H3+ formation in strong fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T08%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20coherent%20control%20of%20H3+%20formation%20in%20strong%20fields&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Michie,%20Matthew%20J.&rft.aucorp=Michigan%20State%20Univ.,%20East%20Lansing,%20MI%20(United%20States)&rft.date=2019-01-28&rft.volume=150&rft.issue=4&rft.spage=044303&rft.epage=044303&rft.pages=044303-044303&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5070067&rft_dat=%3Cproquest_osti_%3E2169981783%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2169981783&rft_id=info:pmid/&rfr_iscdi=true |