Electronic Modulation of Near-Field Radiative Transfer in Graphene Field Effect Heterostructures
Manipulating heat flow in a controllable and reversible manner is a topic of fundamental and practical interest. Numerous approaches to perform thermal switching have been reported, but they typically suffer from various limitations, for instance requiring mechanical modulation of a submicron gap sp...
Gespeichert in:
Veröffentlicht in: | Nano letters 2019-06, Vol.19 (6), p.3898-3904 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Manipulating heat flow in a controllable and reversible manner is a topic of fundamental and practical interest. Numerous approaches to perform thermal switching have been reported, but they typically suffer from various limitations, for instance requiring mechanical modulation of a submicron gap spacing or only operating in a narrow temperature window. Here, we report the experimental modulation of radiative heat flow by electronic gating of a graphene field effect heterostructure without any moving elements. We measure a maximum heat flux modulation of 4 ± 3% and an absolute modulation depth of 24 ± 7 mW m–2 V–1 in samples with vacuum gap distances ranging from 1 to 3 μm. The active area in the samples through which heat is transferred is ∼1 cm2, indicating the scalable nature of these structures. A clear experimental path exists to realize switching ratios as large as 100%, laying the foundation for electronic control of near-field thermal radiation using 2D materials. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b01086 |