Electronic Modulation of Near-Field Radiative Transfer in Graphene Field Effect Heterostructures

Manipulating heat flow in a controllable and reversible manner is a topic of fundamental and practical interest. Numerous approaches to perform thermal switching have been reported, but they typically suffer from various limitations, for instance requiring mechanical modulation of a submicron gap sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-06, Vol.19 (6), p.3898-3904
Hauptverfasser: Thomas, Nathan H, Sherrott, Michelle C, Broulliet, Jeremy, Atwater, Harry A, Minnich, Austin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Manipulating heat flow in a controllable and reversible manner is a topic of fundamental and practical interest. Numerous approaches to perform thermal switching have been reported, but they typically suffer from various limitations, for instance requiring mechanical modulation of a submicron gap spacing or only operating in a narrow temperature window. Here, we report the experimental modulation of radiative heat flow by electronic gating of a graphene field effect heterostructure without any moving elements. We measure a maximum heat flux modulation of 4 ± 3% and an absolute modulation depth of 24 ± 7 mW m–2 V–1 in samples with vacuum gap distances ranging from 1 to 3 μm. The active area in the samples through which heat is transferred is ∼1 cm2, indicating the scalable nature of these structures. A clear experimental path exists to realize switching ratios as large as 100%, laying the foundation for electronic control of near-field thermal radiation using 2D materials.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b01086