A point process model for generating biofilms with realistic microstructure and rheology
Biofilms are communities of bacteria that exhibit a multitude of multiscale biomechanical behaviours. Recent experimental advances have led to characterisations of these behaviours in terms of measurements of the viscoelastic moduli of biofilms grown in bioreactors and the fracture and fragmentation...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2018-12, Vol.29 (6), p.1141-1177 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1177 |
---|---|
container_issue | 6 |
container_start_page | 1141 |
container_title | European journal of applied mathematics |
container_volume | 29 |
creator | STOTSKY, JAY ALEXANDER DUKIC, VANJA BORTZ, DAVID M. |
description | Biofilms are communities of bacteria that exhibit a multitude of multiscale biomechanical behaviours. Recent experimental advances have led to characterisations of these behaviours in terms of measurements of the viscoelastic moduli of biofilms grown in bioreactors and the fracture and fragmentation properties of biofilms. These properties are macroscale features of biofilms; however, a previous work by our group has shown that heterogeneous microscale features are critical in predicting biofilm rheology. In this paper, we use tools from statistical physics to develop a generative statistical model of the positions of bacteria in biofilms. Specifically, the model is a type of pairwise interaction model (PIM). We show through simulation that the macroscopic mechanical properties of biofilms depend on the choice of microscale spatial model. A key finding is that uniform and non-uniform sets of points lead to differing mechanical properties. This distinction appears not to have been previously considered in mathematical biofilm literature. We also found that realisations of a biologically informed PIM have realistic in silico mechanical properties, and have statistical properties that closely match experimental data. We also note that a Poisson spatial point process of suitable number density also yields realistic mechanical properties, but that the spatial distribution of points does not reflect those occurring in our experimentally observed biofilm. |
doi_str_mv | 10.1017/S0956792518000220 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1610341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0956792518000220</cupid><sourcerecordid>2127564462</sourcerecordid><originalsourceid>FETCH-LOGICAL-c387t-c6b611216aa40c0abe2a2441603c35e6d7632d9d27d6382ebaf4bb3d1212862e3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHdB19W8mk6Xw-ALBlyo4C6k6W0nQ9uMSYrMvzdlBlyIq7s43zmcexC6puSOElrcv5Eyl0XJcroghDBGTtCMCllmQrD8FM0mOZv0c3QRwpYQyklRztDnEu-cHSLeeWcgBNy7GjrcOI9bGMDraIcWV9Y1tusD_rZxgz3ozoZoDe6t8S5EP5o4esB6qLHfgOtcu79EZ43uAlwd7xx9PD68r56z9evTy2q5zgxfFDEzspKUMiq1FsQQXQHTTAgqCTc8B1kXkrO6rFlRS75gUOlGVBWvk4UtJAM-RzeH3NTDqmBsBLMxbhjAREUlJVzQBN0eoPTl1wghqq0b_ZB6qZRT5FIIyRJFD9T0VPDQqJ23vfZ7RYmaVlZ_Vk4efvTovvK2buE3-n_XD_osfmE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127564462</pqid></control><display><type>article</type><title>A point process model for generating biofilms with realistic microstructure and rheology</title><source>Cambridge Journals</source><creator>STOTSKY, JAY ALEXANDER ; DUKIC, VANJA ; BORTZ, DAVID M.</creator><creatorcontrib>STOTSKY, JAY ALEXANDER ; DUKIC, VANJA ; BORTZ, DAVID M. ; Krell Institute, Ames, IA (United States)</creatorcontrib><description>Biofilms are communities of bacteria that exhibit a multitude of multiscale biomechanical behaviours. Recent experimental advances have led to characterisations of these behaviours in terms of measurements of the viscoelastic moduli of biofilms grown in bioreactors and the fracture and fragmentation properties of biofilms. These properties are macroscale features of biofilms; however, a previous work by our group has shown that heterogeneous microscale features are critical in predicting biofilm rheology. In this paper, we use tools from statistical physics to develop a generative statistical model of the positions of bacteria in biofilms. Specifically, the model is a type of pairwise interaction model (PIM). We show through simulation that the macroscopic mechanical properties of biofilms depend on the choice of microscale spatial model. A key finding is that uniform and non-uniform sets of points lead to differing mechanical properties. This distinction appears not to have been previously considered in mathematical biofilm literature. We also found that realisations of a biologically informed PIM have realistic in silico mechanical properties, and have statistical properties that closely match experimental data. We also note that a Poisson spatial point process of suitable number density also yields realistic mechanical properties, but that the spatial distribution of points does not reflect those occurring in our experimentally observed biofilm.</description><identifier>ISSN: 0956-7925</identifier><identifier>EISSN: 1469-4425</identifier><identifier>DOI: 10.1017/S0956792518000220</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied mathematics ; Bacteria ; Biofilms ; Biomechanics ; Bioreactors ; Computer simulation ; Interaction models ; Mathematics ; Mechanical properties ; Nonparametric statistics ; Powder injection molding ; Rheological properties ; Rheology ; Spatial distribution ; Statistical models ; Viscoelasticity</subject><ispartof>European journal of applied mathematics, 2018-12, Vol.29 (6), p.1141-1177</ispartof><rights>Copyright © Cambridge University Press 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c387t-c6b611216aa40c0abe2a2441603c35e6d7632d9d27d6382ebaf4bb3d1212862e3</citedby><cites>FETCH-LOGICAL-c387t-c6b611216aa40c0abe2a2441603c35e6d7632d9d27d6382ebaf4bb3d1212862e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0956792518000220/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27903,27904,55606</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1610341$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>STOTSKY, JAY ALEXANDER</creatorcontrib><creatorcontrib>DUKIC, VANJA</creatorcontrib><creatorcontrib>BORTZ, DAVID M.</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><title>A point process model for generating biofilms with realistic microstructure and rheology</title><title>European journal of applied mathematics</title><addtitle>Eur. J. Appl. Math</addtitle><description>Biofilms are communities of bacteria that exhibit a multitude of multiscale biomechanical behaviours. Recent experimental advances have led to characterisations of these behaviours in terms of measurements of the viscoelastic moduli of biofilms grown in bioreactors and the fracture and fragmentation properties of biofilms. These properties are macroscale features of biofilms; however, a previous work by our group has shown that heterogeneous microscale features are critical in predicting biofilm rheology. In this paper, we use tools from statistical physics to develop a generative statistical model of the positions of bacteria in biofilms. Specifically, the model is a type of pairwise interaction model (PIM). We show through simulation that the macroscopic mechanical properties of biofilms depend on the choice of microscale spatial model. A key finding is that uniform and non-uniform sets of points lead to differing mechanical properties. This distinction appears not to have been previously considered in mathematical biofilm literature. We also found that realisations of a biologically informed PIM have realistic in silico mechanical properties, and have statistical properties that closely match experimental data. We also note that a Poisson spatial point process of suitable number density also yields realistic mechanical properties, but that the spatial distribution of points does not reflect those occurring in our experimentally observed biofilm.</description><subject>Applied mathematics</subject><subject>Bacteria</subject><subject>Biofilms</subject><subject>Biomechanics</subject><subject>Bioreactors</subject><subject>Computer simulation</subject><subject>Interaction models</subject><subject>Mathematics</subject><subject>Mechanical properties</subject><subject>Nonparametric statistics</subject><subject>Powder injection molding</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Spatial distribution</subject><subject>Statistical models</subject><subject>Viscoelasticity</subject><issn>0956-7925</issn><issn>1469-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHdB19W8mk6Xw-ALBlyo4C6k6W0nQ9uMSYrMvzdlBlyIq7s43zmcexC6puSOElrcv5Eyl0XJcroghDBGTtCMCllmQrD8FM0mOZv0c3QRwpYQyklRztDnEu-cHSLeeWcgBNy7GjrcOI9bGMDraIcWV9Y1tusD_rZxgz3ozoZoDe6t8S5EP5o4esB6qLHfgOtcu79EZ43uAlwd7xx9PD68r56z9evTy2q5zgxfFDEzspKUMiq1FsQQXQHTTAgqCTc8B1kXkrO6rFlRS75gUOlGVBWvk4UtJAM-RzeH3NTDqmBsBLMxbhjAREUlJVzQBN0eoPTl1wghqq0b_ZB6qZRT5FIIyRJFD9T0VPDQqJ23vfZ7RYmaVlZ_Vk4efvTovvK2buE3-n_XD_osfmE</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>STOTSKY, JAY ALEXANDER</creator><creator>DUKIC, VANJA</creator><creator>BORTZ, DAVID M.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope></search><sort><creationdate>20181201</creationdate><title>A point process model for generating biofilms with realistic microstructure and rheology</title><author>STOTSKY, JAY ALEXANDER ; DUKIC, VANJA ; BORTZ, DAVID M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c387t-c6b611216aa40c0abe2a2441603c35e6d7632d9d27d6382ebaf4bb3d1212862e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Bacteria</topic><topic>Biofilms</topic><topic>Biomechanics</topic><topic>Bioreactors</topic><topic>Computer simulation</topic><topic>Interaction models</topic><topic>Mathematics</topic><topic>Mechanical properties</topic><topic>Nonparametric statistics</topic><topic>Powder injection molding</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Spatial distribution</topic><topic>Statistical models</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STOTSKY, JAY ALEXANDER</creatorcontrib><creatorcontrib>DUKIC, VANJA</creatorcontrib><creatorcontrib>BORTZ, DAVID M.</creatorcontrib><creatorcontrib>Krell Institute, Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>European journal of applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STOTSKY, JAY ALEXANDER</au><au>DUKIC, VANJA</au><au>BORTZ, DAVID M.</au><aucorp>Krell Institute, Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A point process model for generating biofilms with realistic microstructure and rheology</atitle><jtitle>European journal of applied mathematics</jtitle><addtitle>Eur. J. Appl. Math</addtitle><date>2018-12-01</date><risdate>2018</risdate><volume>29</volume><issue>6</issue><spage>1141</spage><epage>1177</epage><pages>1141-1177</pages><issn>0956-7925</issn><eissn>1469-4425</eissn><abstract>Biofilms are communities of bacteria that exhibit a multitude of multiscale biomechanical behaviours. Recent experimental advances have led to characterisations of these behaviours in terms of measurements of the viscoelastic moduli of biofilms grown in bioreactors and the fracture and fragmentation properties of biofilms. These properties are macroscale features of biofilms; however, a previous work by our group has shown that heterogeneous microscale features are critical in predicting biofilm rheology. In this paper, we use tools from statistical physics to develop a generative statistical model of the positions of bacteria in biofilms. Specifically, the model is a type of pairwise interaction model (PIM). We show through simulation that the macroscopic mechanical properties of biofilms depend on the choice of microscale spatial model. A key finding is that uniform and non-uniform sets of points lead to differing mechanical properties. This distinction appears not to have been previously considered in mathematical biofilm literature. We also found that realisations of a biologically informed PIM have realistic in silico mechanical properties, and have statistical properties that closely match experimental data. We also note that a Poisson spatial point process of suitable number density also yields realistic mechanical properties, but that the spatial distribution of points does not reflect those occurring in our experimentally observed biofilm.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0956792518000220</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-7925 |
ispartof | European journal of applied mathematics, 2018-12, Vol.29 (6), p.1141-1177 |
issn | 0956-7925 1469-4425 |
language | eng |
recordid | cdi_osti_scitechconnect_1610341 |
source | Cambridge Journals |
subjects | Applied mathematics Bacteria Biofilms Biomechanics Bioreactors Computer simulation Interaction models Mathematics Mechanical properties Nonparametric statistics Powder injection molding Rheological properties Rheology Spatial distribution Statistical models Viscoelasticity |
title | A point process model for generating biofilms with realistic microstructure and rheology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A27%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20point%20process%20model%20for%20generating%20biofilms%20with%20realistic%20microstructure%20and%20rheology&rft.jtitle=European%20journal%20of%20applied%20mathematics&rft.au=STOTSKY,%20JAY%20ALEXANDER&rft.aucorp=Krell%20Institute,%20Ames,%20IA%20(United%20States)&rft.date=2018-12-01&rft.volume=29&rft.issue=6&rft.spage=1141&rft.epage=1177&rft.pages=1141-1177&rft.issn=0956-7925&rft.eissn=1469-4425&rft_id=info:doi/10.1017/S0956792518000220&rft_dat=%3Cproquest_osti_%3E2127564462%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127564462&rft_id=info:pmid/&rft_cupid=10_1017_S0956792518000220&rfr_iscdi=true |