Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow

The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of computation 2019-01, Vol.88 (315), p.91-121
Hauptverfasser: Wang, Haijin, Liu, Yunxian, Zhang, Qiang, Shu, Chi-Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121
container_issue 315
container_start_page 91
container_title Mathematics of computation
container_volume 88
creator Wang, Haijin
Liu, Yunxian
Zhang, Qiang
Shu, Chi-Wang
description The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equations numerically. For the Oseen equation, using first order IMEX time discretization as an example, we show that the IMEX-LDG scheme is unconditionally stable for \mathcal {Q}_k elements on cartesian meshes, in the sense that the time-step \tau is only required to be bounded from above by a positive constant independent of the spatial mesh size h. Furthermore, by the aid of the Stokes projection and an elaborate energy analysis, we obtain the L^{\infty }(L^2) optimal error estimates for both the velocity and the stress (gradient of velocity), in both space and time. By the inf-sup argument, we also obtain the L^{\infty }(L^2) optimal error estimates for the pressure. Numerical experiments are given to validate our main results.
doi_str_mv 10.1090/mcom/3312
format Article
fullrecord <record><control><sourceid>ams_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1609967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1090_mcom_3312</sourcerecordid><originalsourceid>FETCH-LOGICAL-a320t-264628c9d979c41e125ed0ca033206406337e73090bae728ee580106f8905cc03</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouP45-A2CePFQd5K0aXqURVdhwYueSzad2miblCbr6rc3Sz17mRlmfgzvPUKuGNwxqGA5GD8shWD8iCwYKJVJlfNjsgDgRVaUTJ2SsxA-AIDJolyQr403uqeNDca7aN3O7wJd6x6nT-vogLHzTaB7Gztqh7G3xsYMv-eBRjtgNujJdNa909ZP86bBEV2DLlLrkpxxwhDstkfa9jvbpOr3F-Sk1X3Ay79-Tt4eH15XT9nmZf28ut9kWnCIGZe55MpUTVVWJmfIeIENGA0inWUOUogSS5GMbzWWXCEWChjIVlVQGAPinFzPf32Itg5JNJouOXVoYs0kVJUsE3Q7Q2byIUzY1uNkk62fmkF9SLU-pFofUk3szczqIfyD_QIQEXgr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow</title><source>American Mathematical Society Publications</source><creator>Wang, Haijin ; Liu, Yunxian ; Zhang, Qiang ; Shu, Chi-Wang</creator><creatorcontrib>Wang, Haijin ; Liu, Yunxian ; Zhang, Qiang ; Shu, Chi-Wang ; Brown Univ., Providence, RI (United States)</creatorcontrib><description>The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equations numerically. For the Oseen equation, using first order IMEX time discretization as an example, we show that the IMEX-LDG scheme is unconditionally stable for \mathcal {Q}_k elements on cartesian meshes, in the sense that the time-step \tau is only required to be bounded from above by a positive constant independent of the spatial mesh size h. Furthermore, by the aid of the Stokes projection and an elaborate energy analysis, we obtain the L^{\infty }(L^2) optimal error estimates for both the velocity and the stress (gradient of velocity), in both space and time. By the inf-sup argument, we also obtain the L^{\infty }(L^2) optimal error estimates for the pressure. Numerical experiments are given to validate our main results.</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/mcom/3312</identifier><language>eng</language><publisher>United States: American Mathematical Society</publisher><subject>Mathematics</subject><ispartof>Mathematics of computation, 2019-01, Vol.88 (315), p.91-121</ispartof><rights>Copyright 2018, American Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a320t-264628c9d979c41e125ed0ca033206406337e73090bae728ee580106f8905cc03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03312-9/S0025-5718-2018-03312-9.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2019-88-315/S0025-5718-2018-03312-9/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,230,314,780,784,885,23328,27924,27925,77836,77846</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1609967$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Haijin</creatorcontrib><creatorcontrib>Liu, Yunxian</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><creatorcontrib>Brown Univ., Providence, RI (United States)</creatorcontrib><title>Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow</title><title>Mathematics of computation</title><description>The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equations numerically. For the Oseen equation, using first order IMEX time discretization as an example, we show that the IMEX-LDG scheme is unconditionally stable for \mathcal {Q}_k elements on cartesian meshes, in the sense that the time-step \tau is only required to be bounded from above by a positive constant independent of the spatial mesh size h. Furthermore, by the aid of the Stokes projection and an elaborate energy analysis, we obtain the L^{\infty }(L^2) optimal error estimates for both the velocity and the stress (gradient of velocity), in both space and time. By the inf-sup argument, we also obtain the L^{\infty }(L^2) optimal error estimates for the pressure. Numerical experiments are given to validate our main results.</description><subject>Mathematics</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouP45-A2CePFQd5K0aXqURVdhwYueSzad2miblCbr6rc3Sz17mRlmfgzvPUKuGNwxqGA5GD8shWD8iCwYKJVJlfNjsgDgRVaUTJ2SsxA-AIDJolyQr403uqeNDca7aN3O7wJd6x6nT-vogLHzTaB7Gztqh7G3xsYMv-eBRjtgNujJdNa909ZP86bBEV2DLlLrkpxxwhDstkfa9jvbpOr3F-Sk1X3Ay79-Tt4eH15XT9nmZf28ut9kWnCIGZe55MpUTVVWJmfIeIENGA0inWUOUogSS5GMbzWWXCEWChjIVlVQGAPinFzPf32Itg5JNJouOXVoYs0kVJUsE3Q7Q2byIUzY1uNkk62fmkF9SLU-pFofUk3szczqIfyD_QIQEXgr</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Wang, Haijin</creator><creator>Liu, Yunxian</creator><creator>Zhang, Qiang</creator><creator>Shu, Chi-Wang</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190101</creationdate><title>Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow</title><author>Wang, Haijin ; Liu, Yunxian ; Zhang, Qiang ; Shu, Chi-Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a320t-264628c9d979c41e125ed0ca033206406337e73090bae728ee580106f8905cc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Haijin</creatorcontrib><creatorcontrib>Liu, Yunxian</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Shu, Chi-Wang</creatorcontrib><creatorcontrib>Brown Univ., Providence, RI (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Haijin</au><au>Liu, Yunxian</au><au>Zhang, Qiang</au><au>Shu, Chi-Wang</au><aucorp>Brown Univ., Providence, RI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow</atitle><jtitle>Mathematics of computation</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>88</volume><issue>315</issue><spage>91</spage><epage>121</epage><pages>91-121</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>The main purpose of this paper is to study the stability and error estimates of the local discontinuous Galerkin (LDG) methods coupled with multi-step implicit-explicit (IMEX) time discretization schemes, for solving time-dependent incompressible fluid flows. We will give theoretical analysis for the Oseen equation, and assess the performance of the schemes for incompressible Navier-Stokes equations numerically. For the Oseen equation, using first order IMEX time discretization as an example, we show that the IMEX-LDG scheme is unconditionally stable for \mathcal {Q}_k elements on cartesian meshes, in the sense that the time-step \tau is only required to be bounded from above by a positive constant independent of the spatial mesh size h. Furthermore, by the aid of the Stokes projection and an elaborate energy analysis, we obtain the L^{\infty }(L^2) optimal error estimates for both the velocity and the stress (gradient of velocity), in both space and time. By the inf-sup argument, we also obtain the L^{\infty }(L^2) optimal error estimates for the pressure. Numerical experiments are given to validate our main results.</abstract><cop>United States</cop><pub>American Mathematical Society</pub><doi>10.1090/mcom/3312</doi><tpages>31</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5718
ispartof Mathematics of computation, 2019-01, Vol.88 (315), p.91-121
issn 0025-5718
1088-6842
language eng
recordid cdi_osti_scitechconnect_1609967
source American Mathematical Society Publications
subjects Mathematics
title Local discontinuous Galerkin methods with implicit-explicit time-marching for time-dependent incompressible fluid flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ams_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20discontinuous%20Galerkin%20methods%20with%20implicit-explicit%20time-marching%20for%20time-dependent%20incompressible%20fluid%20flow&rft.jtitle=Mathematics%20of%20computation&rft.au=Wang,%20Haijin&rft.aucorp=Brown%20Univ.,%20Providence,%20RI%20(United%20States)&rft.date=2019-01-01&rft.volume=88&rft.issue=315&rft.spage=91&rft.epage=121&rft.pages=91-121&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/mcom/3312&rft_dat=%3Cams_osti_%3E10_1090_mcom_3312%3C/ams_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true