Review of surface water interactions with metal oxide nanoparticles

Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2019-02, Vol.34 (3), p.416-427
Hauptverfasser: Calvin, Jason J., Rosen, Peter F., Ross, Nancy L., Navrotsky, Alexandra, Woodfield, Brian F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 3
container_start_page 416
container_title Journal of materials research
container_volume 34
creator Calvin, Jason J.
Rosen, Peter F.
Ross, Nancy L.
Navrotsky, Alexandra
Woodfield, Brian F.
description Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces.
doi_str_mv 10.1557/jmr.2019.33
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1609601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2019_33</cupid><sourcerecordid>2180697278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f033aa4e277f09015416260b44b534282a17f633169e39e30725d87cf6e19b763</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqyT8Q9Khb87XJ7lGKX1AQRM8hm87WlO6mJqnVf2_KFryIMMxcHl6GF6FzSia0LNXNsgsTRmg94fwAjRgRoig5k4doRKpKFKym4hidxLgkhJZEiRGavsCngy32LY6b0BoLeGsSBOz6vI1NzvcRb116xx0ks8L-y80B96b3axOSsyuIp-ioNasIZ_s7Rm_3d6_Tx2L2_PA0vZ0VlkueipZwbowAplRL6vyAoJJJ0gjRlFywihmqWsk5lTXwPESxcl4p20qgdaMkH6OLIdfH5HS0LoF9t77vwSZNJakloRldDmgd_McGYtJLvwl9_kszWhFZK6aqrK4GZYOPMUCr18F1JnxrSvSuSp2r1LsqNedZXw86ZtUvIPxm_s2LfbjpmuDmC_jf_wD8NIKW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180697278</pqid></control><display><type>article</type><title>Review of surface water interactions with metal oxide nanoparticles</title><source>Cambridge Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Calvin, Jason J. ; Rosen, Peter F. ; Ross, Nancy L. ; Navrotsky, Alexandra ; Woodfield, Brian F.</creator><creatorcontrib>Calvin, Jason J. ; Rosen, Peter F. ; Ross, Nancy L. ; Navrotsky, Alexandra ; Woodfield, Brian F. ; Brigham Young Univ., Provo, UT (United States) ; Univ. of California, San Diego, CA (United States)</creatorcontrib><description>Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2019.33</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Adsorbed water ; Adsorption ; Aluminum oxide ; Applied and Technical Physics ; Binding sites ; Biomaterials ; Cassiterite ; Computer simulation ; Density functional theory ; Heat ; Heat measurement ; High temperature ; Hydration ; Inelastic scattering ; Inorganic Chemistry ; Investigations ; Invited Review ; Materials Engineering ; Materials research ; Materials Science ; Metal oxides ; Metastable phases ; Molecular dynamics ; Nanoparticles ; Nanotechnology ; Neutron scattering ; Neutrons ; Quantum dots ; Surface water ; Temperature ; Thermodynamic properties</subject><ispartof>Journal of materials research, 2019-02, Vol.34 (3), p.416-427</ispartof><rights>Copyright © Materials Research Society 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f033aa4e277f09015416260b44b534282a17f633169e39e30725d87cf6e19b763</citedby><cites>FETCH-LOGICAL-c363t-f033aa4e277f09015416260b44b534282a17f633169e39e30725d87cf6e19b763</cites><orcidid>0000-0002-3568-5594 ; 0000000235685594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2019.33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291419000335/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,41464,42533,51294,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1609601$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvin, Jason J.</creatorcontrib><creatorcontrib>Rosen, Peter F.</creatorcontrib><creatorcontrib>Ross, Nancy L.</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Woodfield, Brian F.</creatorcontrib><creatorcontrib>Brigham Young Univ., Provo, UT (United States)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><title>Review of surface water interactions with metal oxide nanoparticles</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces.</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Aluminum oxide</subject><subject>Applied and Technical Physics</subject><subject>Binding sites</subject><subject>Biomaterials</subject><subject>Cassiterite</subject><subject>Computer simulation</subject><subject>Density functional theory</subject><subject>Heat</subject><subject>Heat measurement</subject><subject>High temperature</subject><subject>Hydration</subject><subject>Inelastic scattering</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Invited Review</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Metastable phases</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Quantum dots</subject><subject>Surface water</subject><subject>Temperature</subject><subject>Thermodynamic properties</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90E1LAzEQBuAgCtbqyT8Q9Khb87XJ7lGKX1AQRM8hm87WlO6mJqnVf2_KFryIMMxcHl6GF6FzSia0LNXNsgsTRmg94fwAjRgRoig5k4doRKpKFKym4hidxLgkhJZEiRGavsCngy32LY6b0BoLeGsSBOz6vI1NzvcRb116xx0ks8L-y80B96b3axOSsyuIp-ioNasIZ_s7Rm_3d6_Tx2L2_PA0vZ0VlkueipZwbowAplRL6vyAoJJJ0gjRlFywihmqWsk5lTXwPESxcl4p20qgdaMkH6OLIdfH5HS0LoF9t77vwSZNJakloRldDmgd_McGYtJLvwl9_kszWhFZK6aqrK4GZYOPMUCr18F1JnxrSvSuSp2r1LsqNedZXw86ZtUvIPxm_s2LfbjpmuDmC_jf_wD8NIKW</recordid><startdate>20190214</startdate><enddate>20190214</enddate><creator>Calvin, Jason J.</creator><creator>Rosen, Peter F.</creator><creator>Ross, Nancy L.</creator><creator>Navrotsky, Alexandra</creator><creator>Woodfield, Brian F.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3568-5594</orcidid><orcidid>https://orcid.org/0000000235685594</orcidid></search><sort><creationdate>20190214</creationdate><title>Review of surface water interactions with metal oxide nanoparticles</title><author>Calvin, Jason J. ; Rosen, Peter F. ; Ross, Nancy L. ; Navrotsky, Alexandra ; Woodfield, Brian F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f033aa4e277f09015416260b44b534282a17f633169e39e30725d87cf6e19b763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Aluminum oxide</topic><topic>Applied and Technical Physics</topic><topic>Binding sites</topic><topic>Biomaterials</topic><topic>Cassiterite</topic><topic>Computer simulation</topic><topic>Density functional theory</topic><topic>Heat</topic><topic>Heat measurement</topic><topic>High temperature</topic><topic>Hydration</topic><topic>Inelastic scattering</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Invited Review</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Metastable phases</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Quantum dots</topic><topic>Surface water</topic><topic>Temperature</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvin, Jason J.</creatorcontrib><creatorcontrib>Rosen, Peter F.</creatorcontrib><creatorcontrib>Ross, Nancy L.</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Woodfield, Brian F.</creatorcontrib><creatorcontrib>Brigham Young Univ., Provo, UT (United States)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvin, Jason J.</au><au>Rosen, Peter F.</au><au>Ross, Nancy L.</au><au>Navrotsky, Alexandra</au><au>Woodfield, Brian F.</au><aucorp>Brigham Young Univ., Provo, UT (United States)</aucorp><aucorp>Univ. of California, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of surface water interactions with metal oxide nanoparticles</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-02-14</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>416</spage><epage>427</epage><pages>416-427</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2019.33</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3568-5594</orcidid><orcidid>https://orcid.org/0000000235685594</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2019-02, Vol.34 (3), p.416-427
issn 0884-2914
2044-5326
language eng
recordid cdi_osti_scitechconnect_1609601
source Cambridge Journals; SpringerLink Journals - AutoHoldings
subjects Adsorbed water
Adsorption
Aluminum oxide
Applied and Technical Physics
Binding sites
Biomaterials
Cassiterite
Computer simulation
Density functional theory
Heat
Heat measurement
High temperature
Hydration
Inelastic scattering
Inorganic Chemistry
Investigations
Invited Review
Materials Engineering
Materials research
Materials Science
Metal oxides
Metastable phases
Molecular dynamics
Nanoparticles
Nanotechnology
Neutron scattering
Neutrons
Quantum dots
Surface water
Temperature
Thermodynamic properties
title Review of surface water interactions with metal oxide nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20surface%20water%20interactions%20with%20metal%20oxide%20nanoparticles&rft.jtitle=Journal%20of%20materials%20research&rft.au=Calvin,%20Jason%20J.&rft.aucorp=Brigham%20Young%20Univ.,%20Provo,%20UT%20(United%20States)&rft.date=2019-02-14&rft.volume=34&rft.issue=3&rft.spage=416&rft.epage=427&rft.pages=416-427&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2019.33&rft_dat=%3Cproquest_osti_%3E2180697278%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2180697278&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2019_33&rfr_iscdi=true