Review of surface water interactions with metal oxide nanoparticles
Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxi...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2019-02, Vol.34 (3), p.416-427 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 427 |
---|---|
container_issue | 3 |
container_start_page | 416 |
container_title | Journal of materials research |
container_volume | 34 |
creator | Calvin, Jason J. Rosen, Peter F. Ross, Nancy L. Navrotsky, Alexandra Woodfield, Brian F. |
description | Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces. |
doi_str_mv | 10.1557/jmr.2019.33 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1609601</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2019_33</cupid><sourcerecordid>2180697278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-f033aa4e277f09015416260b44b534282a17f633169e39e30725d87cf6e19b763</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqyT8Q9Khb87XJ7lGKX1AQRM8hm87WlO6mJqnVf2_KFryIMMxcHl6GF6FzSia0LNXNsgsTRmg94fwAjRgRoig5k4doRKpKFKym4hidxLgkhJZEiRGavsCngy32LY6b0BoLeGsSBOz6vI1NzvcRb116xx0ks8L-y80B96b3axOSsyuIp-ioNasIZ_s7Rm_3d6_Tx2L2_PA0vZ0VlkueipZwbowAplRL6vyAoJJJ0gjRlFywihmqWsk5lTXwPESxcl4p20qgdaMkH6OLIdfH5HS0LoF9t77vwSZNJakloRldDmgd_McGYtJLvwl9_kszWhFZK6aqrK4GZYOPMUCr18F1JnxrSvSuSp2r1LsqNedZXw86ZtUvIPxm_s2LfbjpmuDmC_jf_wD8NIKW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180697278</pqid></control><display><type>article</type><title>Review of surface water interactions with metal oxide nanoparticles</title><source>Cambridge Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Calvin, Jason J. ; Rosen, Peter F. ; Ross, Nancy L. ; Navrotsky, Alexandra ; Woodfield, Brian F.</creator><creatorcontrib>Calvin, Jason J. ; Rosen, Peter F. ; Ross, Nancy L. ; Navrotsky, Alexandra ; Woodfield, Brian F. ; Brigham Young Univ., Provo, UT (United States) ; Univ. of California, San Diego, CA (United States)</creatorcontrib><description>Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2019.33</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Adsorbed water ; Adsorption ; Aluminum oxide ; Applied and Technical Physics ; Binding sites ; Biomaterials ; Cassiterite ; Computer simulation ; Density functional theory ; Heat ; Heat measurement ; High temperature ; Hydration ; Inelastic scattering ; Inorganic Chemistry ; Investigations ; Invited Review ; Materials Engineering ; Materials research ; Materials Science ; Metal oxides ; Metastable phases ; Molecular dynamics ; Nanoparticles ; Nanotechnology ; Neutron scattering ; Neutrons ; Quantum dots ; Surface water ; Temperature ; Thermodynamic properties</subject><ispartof>Journal of materials research, 2019-02, Vol.34 (3), p.416-427</ispartof><rights>Copyright © Materials Research Society 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-f033aa4e277f09015416260b44b534282a17f633169e39e30725d87cf6e19b763</citedby><cites>FETCH-LOGICAL-c363t-f033aa4e277f09015416260b44b534282a17f633169e39e30725d87cf6e19b763</cites><orcidid>0000-0002-3568-5594 ; 0000000235685594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2019.33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291419000335/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,41464,42533,51294,55603</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1609601$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Calvin, Jason J.</creatorcontrib><creatorcontrib>Rosen, Peter F.</creatorcontrib><creatorcontrib>Ross, Nancy L.</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Woodfield, Brian F.</creatorcontrib><creatorcontrib>Brigham Young Univ., Provo, UT (United States)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><title>Review of surface water interactions with metal oxide nanoparticles</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces.</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Aluminum oxide</subject><subject>Applied and Technical Physics</subject><subject>Binding sites</subject><subject>Biomaterials</subject><subject>Cassiterite</subject><subject>Computer simulation</subject><subject>Density functional theory</subject><subject>Heat</subject><subject>Heat measurement</subject><subject>High temperature</subject><subject>Hydration</subject><subject>Inelastic scattering</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Invited Review</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal oxides</subject><subject>Metastable phases</subject><subject>Molecular dynamics</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neutron scattering</subject><subject>Neutrons</subject><subject>Quantum dots</subject><subject>Surface water</subject><subject>Temperature</subject><subject>Thermodynamic properties</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp90E1LAzEQBuAgCtbqyT8Q9Khb87XJ7lGKX1AQRM8hm87WlO6mJqnVf2_KFryIMMxcHl6GF6FzSia0LNXNsgsTRmg94fwAjRgRoig5k4doRKpKFKym4hidxLgkhJZEiRGavsCngy32LY6b0BoLeGsSBOz6vI1NzvcRb116xx0ks8L-y80B96b3axOSsyuIp-ioNasIZ_s7Rm_3d6_Tx2L2_PA0vZ0VlkueipZwbowAplRL6vyAoJJJ0gjRlFywihmqWsk5lTXwPESxcl4p20qgdaMkH6OLIdfH5HS0LoF9t77vwSZNJakloRldDmgd_McGYtJLvwl9_kszWhFZK6aqrK4GZYOPMUCr18F1JnxrSvSuSp2r1LsqNedZXw86ZtUvIPxm_s2LfbjpmuDmC_jf_wD8NIKW</recordid><startdate>20190214</startdate><enddate>20190214</enddate><creator>Calvin, Jason J.</creator><creator>Rosen, Peter F.</creator><creator>Ross, Nancy L.</creator><creator>Navrotsky, Alexandra</creator><creator>Woodfield, Brian F.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3568-5594</orcidid><orcidid>https://orcid.org/0000000235685594</orcidid></search><sort><creationdate>20190214</creationdate><title>Review of surface water interactions with metal oxide nanoparticles</title><author>Calvin, Jason J. ; Rosen, Peter F. ; Ross, Nancy L. ; Navrotsky, Alexandra ; Woodfield, Brian F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-f033aa4e277f09015416260b44b534282a17f633169e39e30725d87cf6e19b763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Aluminum oxide</topic><topic>Applied and Technical Physics</topic><topic>Binding sites</topic><topic>Biomaterials</topic><topic>Cassiterite</topic><topic>Computer simulation</topic><topic>Density functional theory</topic><topic>Heat</topic><topic>Heat measurement</topic><topic>High temperature</topic><topic>Hydration</topic><topic>Inelastic scattering</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Invited Review</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal oxides</topic><topic>Metastable phases</topic><topic>Molecular dynamics</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neutron scattering</topic><topic>Neutrons</topic><topic>Quantum dots</topic><topic>Surface water</topic><topic>Temperature</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Calvin, Jason J.</creatorcontrib><creatorcontrib>Rosen, Peter F.</creatorcontrib><creatorcontrib>Ross, Nancy L.</creatorcontrib><creatorcontrib>Navrotsky, Alexandra</creatorcontrib><creatorcontrib>Woodfield, Brian F.</creatorcontrib><creatorcontrib>Brigham Young Univ., Provo, UT (United States)</creatorcontrib><creatorcontrib>Univ. of California, San Diego, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Calvin, Jason J.</au><au>Rosen, Peter F.</au><au>Ross, Nancy L.</au><au>Navrotsky, Alexandra</au><au>Woodfield, Brian F.</au><aucorp>Brigham Young Univ., Provo, UT (United States)</aucorp><aucorp>Univ. of California, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review of surface water interactions with metal oxide nanoparticles</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-02-14</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>416</spage><epage>427</epage><pages>416-427</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>Surface water can affect the properties of metal oxide nanoparticles. Investigations on several systems revealed that nanoparticles have different thermodynamic properties than their bulk counterparts due to adsorbed water on their surfaces. Some thermodynamically metastable phases of bulk metal oxides become stable when reduced to the nanoscale, partially due to interactions between high energy surfaces and surface water. Water adsorption microcalorimetry and high-temperature oxide melt solution calorimetry, low-temperature specific heat calorimetry, and inelastic neutron scattering are used to understand the interactions of surface water with metal oxide nanoparticles. Computational methods, such as molecular dynamics simulations and density functional theory calculations, have been used to study these interactions. Investigations on titania, cassiterite, and alumina illustrate the insights gained by these measurements. The energetics of water on metal oxide surfaces are different from those of either liquid water or hexagonal ice, and there is substantial variation in water interactions on different metal oxide surfaces.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2019.33</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3568-5594</orcidid><orcidid>https://orcid.org/0000000235685594</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2019-02, Vol.34 (3), p.416-427 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_osti_scitechconnect_1609601 |
source | Cambridge Journals; SpringerLink Journals - AutoHoldings |
subjects | Adsorbed water Adsorption Aluminum oxide Applied and Technical Physics Binding sites Biomaterials Cassiterite Computer simulation Density functional theory Heat Heat measurement High temperature Hydration Inelastic scattering Inorganic Chemistry Investigations Invited Review Materials Engineering Materials research Materials Science Metal oxides Metastable phases Molecular dynamics Nanoparticles Nanotechnology Neutron scattering Neutrons Quantum dots Surface water Temperature Thermodynamic properties |
title | Review of surface water interactions with metal oxide nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T22%3A39%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review%20of%20surface%20water%20interactions%20with%20metal%20oxide%20nanoparticles&rft.jtitle=Journal%20of%20materials%20research&rft.au=Calvin,%20Jason%20J.&rft.aucorp=Brigham%20Young%20Univ.,%20Provo,%20UT%20(United%20States)&rft.date=2019-02-14&rft.volume=34&rft.issue=3&rft.spage=416&rft.epage=427&rft.pages=416-427&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2019.33&rft_dat=%3Cproquest_osti_%3E2180697278%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2180697278&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2019_33&rfr_iscdi=true |