Systematic dependence of kinetic and thermodynamic barriers to homogeneous silica nucleation on NaCl and amino acids
The kinetics of silica polymerization was measured in silicic acid solutions containing a suite of 0.1 M amino acids, 0.1 M citric acid, 0.7 M NaCl, and 0.10 M NaCl (Control). Fitting a modified classical rate model to measurements of induction time (τ) at 20 °C for a series of supersaturated soluti...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2019-02, Vol.34 (3), p.442-455 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 455 |
---|---|
container_issue | 3 |
container_start_page | 442 |
container_title | Journal of materials research |
container_volume | 34 |
creator | Dove, Patricia M. Han, Nizhou Wallace, Adam F. |
description | The kinetics of silica polymerization was measured in silicic acid solutions containing a suite of 0.1 M amino acids, 0.1 M citric acid, 0.7 M NaCl, and 0.10 M NaCl (Control). Fitting a modified classical rate model to measurements of induction time (τ) at 20 °C for a series of supersaturated solutions, we estimate the thermodynamic barrier (ΔGc), interfacial free energy (γ), and kinetic barrier (Δagk) for silica nucleation. For 0.10 M NaCl solutions, γControl = 54.9 ± 1.6 mJ/m2 and ΔagkControl = 2.29 × 10−19 J/mol. These values are consistent with previous reports for amorphous and fused silica materials. To facilitate comparisons with the treatments, ΔagkControl is converted to a molar basis and used as a reference datum, such that ΔagkControl = 0.0 J/mol. The effects of salt and organic acids on nucleation rate have thermodynamic and kinetic origins, respectively. Faster nucleation rates measured in 0.7 M NaCl solutions arise from a lower interfacial free energy, such that γ0.7 M NaCl = 51.4 ± 1.7 mJ/m2. Organic acids increase rate through biomolecule-specific reductions in Δagk. Catalytic effects are greatest for lysine (Δagklysine = −1685 ± 315) and citric acid (Δagkcitric = −1690 ± 96 J/mol). Reductions in the kinetic barrier correlate with net positive charge of the amino acids and dissociation of the amine $\left( {{K_{\alpha {\rm{ - N}}{{\rm{H}}_3}^ {\bf{+}} }}} \right)$ group and thus the abundance of the conjugate base. Citric acid, lacking amine groups, promotes the greatest rate enhancement, thus demonstrating the role(s) of additional kinetic factors in promoting nucleation rate. Catalytic activity correlates with multiple physical and chemical properties of the organic acids. |
doi_str_mv | 10.1557/jmr.2018.474 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1609311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_474</cupid><sourcerecordid>2180691109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-d26a038bb54ea6d6da7ec26b2221ef13e78dd9407172071f65602e8cd5f454143</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKs3f0DQq7sm2Wx2e5TiFxQ9qOeQTWbb1G5Sk_TQf29qC55EGGZgeOZheBG6pKSkdd3cLodQMkLbkjf8CI0Y4byoKyaO0Yi0LS_YhPJTdBbjkhBak4aPUHrbxgSDSlZjA2twBpwG7Hv8aR3stsoZnBYQBm-2Tg1506kQLISIk8cLP_g5OPCbiKNdWa2w2-gVZKF3ONeLmq5-HPnUeay0NfEcnfRqFeHiMMfo4-H-ffpUzF4fn6d3s0JzwlNhmFCkaruu5qCEEUY1oJnoGGMUelpB0xoz4aShDcutF7UgDFpt6p7XnPJqjK72Xh-TlVHbBHqhvXOgk6SCTCpKM3S9h9bBf20gJrn0m-DyX5LRlogJpRkco5s9pYOPMUAv18EOKmwlJXIXvszhy134Moef8WKPx4y5OYRf6R98edCroQvWzOGfg2-kjJZ0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2180691109</pqid></control><display><type>article</type><title>Systematic dependence of kinetic and thermodynamic barriers to homogeneous silica nucleation on NaCl and amino acids</title><source>SpringerLink Journals - AutoHoldings</source><source>Cambridge University Press Journals Complete</source><creator>Dove, Patricia M. ; Han, Nizhou ; Wallace, Adam F.</creator><creatorcontrib>Dove, Patricia M. ; Han, Nizhou ; Wallace, Adam F. ; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>The kinetics of silica polymerization was measured in silicic acid solutions containing a suite of 0.1 M amino acids, 0.1 M citric acid, 0.7 M NaCl, and 0.10 M NaCl (Control). Fitting a modified classical rate model to measurements of induction time (τ) at 20 °C for a series of supersaturated solutions, we estimate the thermodynamic barrier (ΔGc), interfacial free energy (γ), and kinetic barrier (Δagk) for silica nucleation. For 0.10 M NaCl solutions, γControl = 54.9 ± 1.6 mJ/m2 and ΔagkControl = 2.29 × 10−19 J/mol. These values are consistent with previous reports for amorphous and fused silica materials. To facilitate comparisons with the treatments, ΔagkControl is converted to a molar basis and used as a reference datum, such that ΔagkControl = 0.0 J/mol. The effects of salt and organic acids on nucleation rate have thermodynamic and kinetic origins, respectively. Faster nucleation rates measured in 0.7 M NaCl solutions arise from a lower interfacial free energy, such that γ0.7 M NaCl = 51.4 ± 1.7 mJ/m2. Organic acids increase rate through biomolecule-specific reductions in Δagk. Catalytic effects are greatest for lysine (Δagklysine = −1685 ± 315) and citric acid (Δagkcitric = −1690 ± 96 J/mol). Reductions in the kinetic barrier correlate with net positive charge of the amino acids and dissociation of the amine $\left( {{K_{\alpha {\rm{ - N}}{{\rm{H}}_3}^ {\bf{+}} }}} \right)$ group and thus the abundance of the conjugate base. Citric acid, lacking amine groups, promotes the greatest rate enhancement, thus demonstrating the role(s) of additional kinetic factors in promoting nucleation rate. Catalytic activity correlates with multiple physical and chemical properties of the organic acids.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.474</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Amino acids ; Amorphous materials ; Applied and Technical Physics ; Aqueous solutions ; Barriers ; Biomaterials ; Catalysis ; Catalytic activity ; Chemical properties ; Citric acid ; Dependence ; Enzymes ; Free energy ; Fused silica ; Inorganic Chemistry ; Investigations ; Invited Article ; Kinetics ; Lysine ; Materials Engineering ; Materials research ; Materials Science ; Nanotechnology ; Nucleation ; Organic acids ; Organic chemistry ; Peptides ; Plankton ; Polyamines ; Polymerization ; Reaction kinetics ; Silica ; Silicon dioxide ; Sodium chloride ; Studies ; Temperature effects</subject><ispartof>Journal of materials research, 2019-02, Vol.34 (3), p.442-455</ispartof><rights>Copyright © Materials Research Society 2019</rights><rights>The Materials Research Society 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-d26a038bb54ea6d6da7ec26b2221ef13e78dd9407172071f65602e8cd5f454143</citedby><cites>FETCH-LOGICAL-c404t-d26a038bb54ea6d6da7ec26b2221ef13e78dd9407172071f65602e8cd5f454143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2018.474$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291418004740/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,41488,42557,51319,55628</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1609311$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dove, Patricia M.</creatorcontrib><creatorcontrib>Han, Nizhou</creatorcontrib><creatorcontrib>Wallace, Adam F.</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Systematic dependence of kinetic and thermodynamic barriers to homogeneous silica nucleation on NaCl and amino acids</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>The kinetics of silica polymerization was measured in silicic acid solutions containing a suite of 0.1 M amino acids, 0.1 M citric acid, 0.7 M NaCl, and 0.10 M NaCl (Control). Fitting a modified classical rate model to measurements of induction time (τ) at 20 °C for a series of supersaturated solutions, we estimate the thermodynamic barrier (ΔGc), interfacial free energy (γ), and kinetic barrier (Δagk) for silica nucleation. For 0.10 M NaCl solutions, γControl = 54.9 ± 1.6 mJ/m2 and ΔagkControl = 2.29 × 10−19 J/mol. These values are consistent with previous reports for amorphous and fused silica materials. To facilitate comparisons with the treatments, ΔagkControl is converted to a molar basis and used as a reference datum, such that ΔagkControl = 0.0 J/mol. The effects of salt and organic acids on nucleation rate have thermodynamic and kinetic origins, respectively. Faster nucleation rates measured in 0.7 M NaCl solutions arise from a lower interfacial free energy, such that γ0.7 M NaCl = 51.4 ± 1.7 mJ/m2. Organic acids increase rate through biomolecule-specific reductions in Δagk. Catalytic effects are greatest for lysine (Δagklysine = −1685 ± 315) and citric acid (Δagkcitric = −1690 ± 96 J/mol). Reductions in the kinetic barrier correlate with net positive charge of the amino acids and dissociation of the amine $\left( {{K_{\alpha {\rm{ - N}}{{\rm{H}}_3}^ {\bf{+}} }}} \right)$ group and thus the abundance of the conjugate base. Citric acid, lacking amine groups, promotes the greatest rate enhancement, thus demonstrating the role(s) of additional kinetic factors in promoting nucleation rate. Catalytic activity correlates with multiple physical and chemical properties of the organic acids.</description><subject>Amino acids</subject><subject>Amorphous materials</subject><subject>Applied and Technical Physics</subject><subject>Aqueous solutions</subject><subject>Barriers</subject><subject>Biomaterials</subject><subject>Catalysis</subject><subject>Catalytic activity</subject><subject>Chemical properties</subject><subject>Citric acid</subject><subject>Dependence</subject><subject>Enzymes</subject><subject>Free energy</subject><subject>Fused silica</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Invited Article</subject><subject>Kinetics</subject><subject>Lysine</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Nucleation</subject><subject>Organic acids</subject><subject>Organic chemistry</subject><subject>Peptides</subject><subject>Plankton</subject><subject>Polyamines</subject><subject>Polymerization</subject><subject>Reaction kinetics</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Sodium chloride</subject><subject>Studies</subject><subject>Temperature effects</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1LAzEQhoMoWKs3f0DQq7sm2Wx2e5TiFxQ9qOeQTWbb1G5Sk_TQf29qC55EGGZgeOZheBG6pKSkdd3cLodQMkLbkjf8CI0Y4byoKyaO0Yi0LS_YhPJTdBbjkhBak4aPUHrbxgSDSlZjA2twBpwG7Hv8aR3stsoZnBYQBm-2Tg1506kQLISIk8cLP_g5OPCbiKNdWa2w2-gVZKF3ONeLmq5-HPnUeay0NfEcnfRqFeHiMMfo4-H-ffpUzF4fn6d3s0JzwlNhmFCkaruu5qCEEUY1oJnoGGMUelpB0xoz4aShDcutF7UgDFpt6p7XnPJqjK72Xh-TlVHbBHqhvXOgk6SCTCpKM3S9h9bBf20gJrn0m-DyX5LRlogJpRkco5s9pYOPMUAv18EOKmwlJXIXvszhy134Moef8WKPx4y5OYRf6R98edCroQvWzOGfg2-kjJZ0</recordid><startdate>20190214</startdate><enddate>20190214</enddate><creator>Dove, Patricia M.</creator><creator>Han, Nizhou</creator><creator>Wallace, Adam F.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope></search><sort><creationdate>20190214</creationdate><title>Systematic dependence of kinetic and thermodynamic barriers to homogeneous silica nucleation on NaCl and amino acids</title><author>Dove, Patricia M. ; Han, Nizhou ; Wallace, Adam F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-d26a038bb54ea6d6da7ec26b2221ef13e78dd9407172071f65602e8cd5f454143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino acids</topic><topic>Amorphous materials</topic><topic>Applied and Technical Physics</topic><topic>Aqueous solutions</topic><topic>Barriers</topic><topic>Biomaterials</topic><topic>Catalysis</topic><topic>Catalytic activity</topic><topic>Chemical properties</topic><topic>Citric acid</topic><topic>Dependence</topic><topic>Enzymes</topic><topic>Free energy</topic><topic>Fused silica</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Invited Article</topic><topic>Kinetics</topic><topic>Lysine</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Nucleation</topic><topic>Organic acids</topic><topic>Organic chemistry</topic><topic>Peptides</topic><topic>Plankton</topic><topic>Polyamines</topic><topic>Polymerization</topic><topic>Reaction kinetics</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Sodium chloride</topic><topic>Studies</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dove, Patricia M.</creatorcontrib><creatorcontrib>Han, Nizhou</creatorcontrib><creatorcontrib>Wallace, Adam F.</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dove, Patricia M.</au><au>Han, Nizhou</au><au>Wallace, Adam F.</au><aucorp>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic dependence of kinetic and thermodynamic barriers to homogeneous silica nucleation on NaCl and amino acids</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2019-02-14</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>442</spage><epage>455</epage><pages>442-455</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>The kinetics of silica polymerization was measured in silicic acid solutions containing a suite of 0.1 M amino acids, 0.1 M citric acid, 0.7 M NaCl, and 0.10 M NaCl (Control). Fitting a modified classical rate model to measurements of induction time (τ) at 20 °C for a series of supersaturated solutions, we estimate the thermodynamic barrier (ΔGc), interfacial free energy (γ), and kinetic barrier (Δagk) for silica nucleation. For 0.10 M NaCl solutions, γControl = 54.9 ± 1.6 mJ/m2 and ΔagkControl = 2.29 × 10−19 J/mol. These values are consistent with previous reports for amorphous and fused silica materials. To facilitate comparisons with the treatments, ΔagkControl is converted to a molar basis and used as a reference datum, such that ΔagkControl = 0.0 J/mol. The effects of salt and organic acids on nucleation rate have thermodynamic and kinetic origins, respectively. Faster nucleation rates measured in 0.7 M NaCl solutions arise from a lower interfacial free energy, such that γ0.7 M NaCl = 51.4 ± 1.7 mJ/m2. Organic acids increase rate through biomolecule-specific reductions in Δagk. Catalytic effects are greatest for lysine (Δagklysine = −1685 ± 315) and citric acid (Δagkcitric = −1690 ± 96 J/mol). Reductions in the kinetic barrier correlate with net positive charge of the amino acids and dissociation of the amine $\left( {{K_{\alpha {\rm{ - N}}{{\rm{H}}_3}^ {\bf{+}} }}} \right)$ group and thus the abundance of the conjugate base. Citric acid, lacking amine groups, promotes the greatest rate enhancement, thus demonstrating the role(s) of additional kinetic factors in promoting nucleation rate. Catalytic activity correlates with multiple physical and chemical properties of the organic acids.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.474</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2019-02, Vol.34 (3), p.442-455 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_osti_scitechconnect_1609311 |
source | SpringerLink Journals - AutoHoldings; Cambridge University Press Journals Complete |
subjects | Amino acids Amorphous materials Applied and Technical Physics Aqueous solutions Barriers Biomaterials Catalysis Catalytic activity Chemical properties Citric acid Dependence Enzymes Free energy Fused silica Inorganic Chemistry Investigations Invited Article Kinetics Lysine Materials Engineering Materials research Materials Science Nanotechnology Nucleation Organic acids Organic chemistry Peptides Plankton Polyamines Polymerization Reaction kinetics Silica Silicon dioxide Sodium chloride Studies Temperature effects |
title | Systematic dependence of kinetic and thermodynamic barriers to homogeneous silica nucleation on NaCl and amino acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20dependence%20of%20kinetic%20and%20thermodynamic%20barriers%20to%20homogeneous%20silica%20nucleation%20on%20NaCl%20and%20amino%20acids&rft.jtitle=Journal%20of%20materials%20research&rft.au=Dove,%20Patricia%20M.&rft.aucorp=Virginia%20Polytechnic%20Inst.%20and%20State%20Univ.%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2019-02-14&rft.volume=34&rft.issue=3&rft.spage=442&rft.epage=455&rft.pages=442-455&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.474&rft_dat=%3Cproquest_osti_%3E2180691109%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2180691109&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_474&rfr_iscdi=true |