The range of non-Kitaev terms and fractional particles in α-RuCl3

Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum materials 2020-03, Vol.5 (1), Article 14
Hauptverfasser: Wang, Yiping, Osterhoudt, Gavin B., Tian, Yao, Lampen-Kelley, Paige, Banerjee, Arnab, Goldstein, Thomas, Yan, Jun, Knolle, Johannes, Ji, Huiwen, Cava, Robert J., Nasu, Joji, Motome, Yukitoshi, Nagler, Stephen E., Mandrus, David, Burch, Kenneth S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title npj quantum materials
container_volume 5
creator Wang, Yiping
Osterhoudt, Gavin B.
Tian, Yao
Lampen-Kelley, Paige
Banerjee, Arnab
Goldstein, Thomas
Yan, Jun
Knolle, Johannes
Ji, Huiwen
Cava, Robert J.
Nasu, Joji
Motome, Yukitoshi
Nagler, Stephen E.
Mandrus, David
Burch, Kenneth S.
description Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are non-local in terms of spin flips. A key challenge in real materials is identifying the relative size of the non-Kitaev terms and their role in the emergence or suppression of fractional excitations. Here, we identify the energy and temperature boundaries of non-Kitaev interactions by direct comparison of the Raman susceptibility of α -RuCl 3 with quantum Monte Carlo (QMC) results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the magnetic excitations, which is given by creating a pair of fermionic quasiparticles. Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results and focus on the use of the Raman susceptibility provide a stringent new test for future theoretical and experimental studies of QSLs.
doi_str_mv 10.1038/s41535-020-0216-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1606655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488775946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-cc24366749f866a94c17e08d80603a9b170a13e1e2824834afbce1a43188c5453</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWGofwF3QdTR3kkkySy3-oSBIXYc0zdgpbVKTVPCxfBGfyQwj6EYXl3sX5_u4HISOgZ4BZeo8cahZTWhFy4AgYg-NKtZIwgVX-7_uQzRJaUVpoUBxIUbocrZ0OBr_4nBosQ-e3HfZuDecXdwkbPwCt9HY3AVv1nhrYu7s2iXcefz5QZ520zU7QgetWSc3-d5j9Hx9NZvekofHm7vpxQOxHHgm1lacCSF50yohTMMtSEfVQlFBmWnmIKkB5sBVquKKcdPOrQPDGShla16zMToZekPKnU62y84ubfDe2axBUCHqHjodoG0MrzuXsl6FXSy_J11alZR1w8W_FJOSc6gkLRQMlI0hpehavY3dxsR3DVT34vUgXhfxuhev--ZqyKTCFqvxp_nv0BfSDoHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377441270</pqid></control><display><type>article</type><title>The range of non-Kitaev terms and fractional particles in α-RuCl3</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Yiping ; Osterhoudt, Gavin B. ; Tian, Yao ; Lampen-Kelley, Paige ; Banerjee, Arnab ; Goldstein, Thomas ; Yan, Jun ; Knolle, Johannes ; Ji, Huiwen ; Cava, Robert J. ; Nasu, Joji ; Motome, Yukitoshi ; Nagler, Stephen E. ; Mandrus, David ; Burch, Kenneth S.</creator><creatorcontrib>Wang, Yiping ; Osterhoudt, Gavin B. ; Tian, Yao ; Lampen-Kelley, Paige ; Banerjee, Arnab ; Goldstein, Thomas ; Yan, Jun ; Knolle, Johannes ; Ji, Huiwen ; Cava, Robert J. ; Nasu, Joji ; Motome, Yukitoshi ; Nagler, Stephen E. ; Mandrus, David ; Burch, Kenneth S. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Boston College, Chestnut Hill, MA (United States)</creatorcontrib><description>Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are non-local in terms of spin flips. A key challenge in real materials is identifying the relative size of the non-Kitaev terms and their role in the emergence or suppression of fractional excitations. Here, we identify the energy and temperature boundaries of non-Kitaev interactions by direct comparison of the Raman susceptibility of α -RuCl 3 with quantum Monte Carlo (QMC) results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the magnetic excitations, which is given by creating a pair of fermionic quasiparticles. Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results and focus on the use of the Raman susceptibility provide a stringent new test for future theoretical and experimental studies of QSLs.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-020-0216-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/119/997 ; Computer simulation ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Elementary excitations ; Entangled states ; Excitation ; Insulators ; Ising model ; Magnetic permeability ; Magnetic properties and materials ; MATERIALS SCIENCE ; Neutrons ; Physics ; Physics and Astronomy ; Quantum Physics ; Ruthenium trichloride ; Spin liquid ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>npj quantum materials, 2020-03, Vol.5 (1), Article 14</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-cc24366749f866a94c17e08d80603a9b170a13e1e2824834afbce1a43188c5453</citedby><cites>FETCH-LOGICAL-c414t-cc24366749f866a94c17e08d80603a9b170a13e1e2824834afbce1a43188c5453</cites><orcidid>0000-0003-1576-0785 ; 0000-0003-2421-8496 ; 0000-0001-8618-7272 ; 0000-0003-0707-366X ; 0000-0002-3088-6071 ; 0000-0002-7234-2339 ; 0000-0003-3861-4633 ; 0000000272342339 ; 0000000186187272 ; 000000030707366X ; 0000000315760785 ; 0000000230886071 ; 0000000324218496 ; 0000000338614633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41535-020-0216-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41535-020-0216-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27923,27924,41119,42188,51575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1606655$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Osterhoudt, Gavin B.</creatorcontrib><creatorcontrib>Tian, Yao</creatorcontrib><creatorcontrib>Lampen-Kelley, Paige</creatorcontrib><creatorcontrib>Banerjee, Arnab</creatorcontrib><creatorcontrib>Goldstein, Thomas</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Knolle, Johannes</creatorcontrib><creatorcontrib>Ji, Huiwen</creatorcontrib><creatorcontrib>Cava, Robert J.</creatorcontrib><creatorcontrib>Nasu, Joji</creatorcontrib><creatorcontrib>Motome, Yukitoshi</creatorcontrib><creatorcontrib>Nagler, Stephen E.</creatorcontrib><creatorcontrib>Mandrus, David</creatorcontrib><creatorcontrib>Burch, Kenneth S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Boston College, Chestnut Hill, MA (United States)</creatorcontrib><title>The range of non-Kitaev terms and fractional particles in α-RuCl3</title><title>npj quantum materials</title><addtitle>npj Quantum Mater</addtitle><description>Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are non-local in terms of spin flips. A key challenge in real materials is identifying the relative size of the non-Kitaev terms and their role in the emergence or suppression of fractional excitations. Here, we identify the energy and temperature boundaries of non-Kitaev interactions by direct comparison of the Raman susceptibility of α -RuCl 3 with quantum Monte Carlo (QMC) results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the magnetic excitations, which is given by creating a pair of fermionic quasiparticles. Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results and focus on the use of the Raman susceptibility provide a stringent new test for future theoretical and experimental studies of QSLs.</description><subject>639/766/119</subject><subject>639/766/119/997</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Elementary excitations</subject><subject>Entangled states</subject><subject>Excitation</subject><subject>Insulators</subject><subject>Ising model</subject><subject>Magnetic permeability</subject><subject>Magnetic properties and materials</subject><subject>MATERIALS SCIENCE</subject><subject>Neutrons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Ruthenium trichloride</subject><subject>Spin liquid</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEURoMoWGofwF3QdTR3kkkySy3-oSBIXYc0zdgpbVKTVPCxfBGfyQwj6EYXl3sX5_u4HISOgZ4BZeo8cahZTWhFy4AgYg-NKtZIwgVX-7_uQzRJaUVpoUBxIUbocrZ0OBr_4nBosQ-e3HfZuDecXdwkbPwCt9HY3AVv1nhrYu7s2iXcefz5QZ520zU7QgetWSc3-d5j9Hx9NZvekofHm7vpxQOxHHgm1lacCSF50yohTMMtSEfVQlFBmWnmIKkB5sBVquKKcdPOrQPDGShla16zMToZekPKnU62y84ubfDe2axBUCHqHjodoG0MrzuXsl6FXSy_J11alZR1w8W_FJOSc6gkLRQMlI0hpehavY3dxsR3DVT34vUgXhfxuhev--ZqyKTCFqvxp_nv0BfSDoHY</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Wang, Yiping</creator><creator>Osterhoudt, Gavin B.</creator><creator>Tian, Yao</creator><creator>Lampen-Kelley, Paige</creator><creator>Banerjee, Arnab</creator><creator>Goldstein, Thomas</creator><creator>Yan, Jun</creator><creator>Knolle, Johannes</creator><creator>Ji, Huiwen</creator><creator>Cava, Robert J.</creator><creator>Nasu, Joji</creator><creator>Motome, Yukitoshi</creator><creator>Nagler, Stephen E.</creator><creator>Mandrus, David</creator><creator>Burch, Kenneth S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1576-0785</orcidid><orcidid>https://orcid.org/0000-0003-2421-8496</orcidid><orcidid>https://orcid.org/0000-0001-8618-7272</orcidid><orcidid>https://orcid.org/0000-0003-0707-366X</orcidid><orcidid>https://orcid.org/0000-0002-3088-6071</orcidid><orcidid>https://orcid.org/0000-0002-7234-2339</orcidid><orcidid>https://orcid.org/0000-0003-3861-4633</orcidid><orcidid>https://orcid.org/0000000272342339</orcidid><orcidid>https://orcid.org/0000000186187272</orcidid><orcidid>https://orcid.org/000000030707366X</orcidid><orcidid>https://orcid.org/0000000315760785</orcidid><orcidid>https://orcid.org/0000000230886071</orcidid><orcidid>https://orcid.org/0000000324218496</orcidid><orcidid>https://orcid.org/0000000338614633</orcidid></search><sort><creationdate>20200304</creationdate><title>The range of non-Kitaev terms and fractional particles in α-RuCl3</title><author>Wang, Yiping ; Osterhoudt, Gavin B. ; Tian, Yao ; Lampen-Kelley, Paige ; Banerjee, Arnab ; Goldstein, Thomas ; Yan, Jun ; Knolle, Johannes ; Ji, Huiwen ; Cava, Robert J. ; Nasu, Joji ; Motome, Yukitoshi ; Nagler, Stephen E. ; Mandrus, David ; Burch, Kenneth S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-cc24366749f866a94c17e08d80603a9b170a13e1e2824834afbce1a43188c5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119</topic><topic>639/766/119/997</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Elementary excitations</topic><topic>Entangled states</topic><topic>Excitation</topic><topic>Insulators</topic><topic>Ising model</topic><topic>Magnetic permeability</topic><topic>Magnetic properties and materials</topic><topic>MATERIALS SCIENCE</topic><topic>Neutrons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Ruthenium trichloride</topic><topic>Spin liquid</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Osterhoudt, Gavin B.</creatorcontrib><creatorcontrib>Tian, Yao</creatorcontrib><creatorcontrib>Lampen-Kelley, Paige</creatorcontrib><creatorcontrib>Banerjee, Arnab</creatorcontrib><creatorcontrib>Goldstein, Thomas</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Knolle, Johannes</creatorcontrib><creatorcontrib>Ji, Huiwen</creatorcontrib><creatorcontrib>Cava, Robert J.</creatorcontrib><creatorcontrib>Nasu, Joji</creatorcontrib><creatorcontrib>Motome, Yukitoshi</creatorcontrib><creatorcontrib>Nagler, Stephen E.</creatorcontrib><creatorcontrib>Mandrus, David</creatorcontrib><creatorcontrib>Burch, Kenneth S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Boston College, Chestnut Hill, MA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yiping</au><au>Osterhoudt, Gavin B.</au><au>Tian, Yao</au><au>Lampen-Kelley, Paige</au><au>Banerjee, Arnab</au><au>Goldstein, Thomas</au><au>Yan, Jun</au><au>Knolle, Johannes</au><au>Ji, Huiwen</au><au>Cava, Robert J.</au><au>Nasu, Joji</au><au>Motome, Yukitoshi</au><au>Nagler, Stephen E.</au><au>Mandrus, David</au><au>Burch, Kenneth S.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Boston College, Chestnut Hill, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The range of non-Kitaev terms and fractional particles in α-RuCl3</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quantum Mater</stitle><date>2020-03-04</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><artnum>14</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are non-local in terms of spin flips. A key challenge in real materials is identifying the relative size of the non-Kitaev terms and their role in the emergence or suppression of fractional excitations. Here, we identify the energy and temperature boundaries of non-Kitaev interactions by direct comparison of the Raman susceptibility of α -RuCl 3 with quantum Monte Carlo (QMC) results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the magnetic excitations, which is given by creating a pair of fermionic quasiparticles. Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results and focus on the use of the Raman susceptibility provide a stringent new test for future theoretical and experimental studies of QSLs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-020-0216-6</doi><orcidid>https://orcid.org/0000-0003-1576-0785</orcidid><orcidid>https://orcid.org/0000-0003-2421-8496</orcidid><orcidid>https://orcid.org/0000-0001-8618-7272</orcidid><orcidid>https://orcid.org/0000-0003-0707-366X</orcidid><orcidid>https://orcid.org/0000-0002-3088-6071</orcidid><orcidid>https://orcid.org/0000-0002-7234-2339</orcidid><orcidid>https://orcid.org/0000-0003-3861-4633</orcidid><orcidid>https://orcid.org/0000000272342339</orcidid><orcidid>https://orcid.org/0000000186187272</orcidid><orcidid>https://orcid.org/000000030707366X</orcidid><orcidid>https://orcid.org/0000000315760785</orcidid><orcidid>https://orcid.org/0000000230886071</orcidid><orcidid>https://orcid.org/0000000324218496</orcidid><orcidid>https://orcid.org/0000000338614633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-4648
ispartof npj quantum materials, 2020-03, Vol.5 (1), Article 14
issn 2397-4648
2397-4648
language eng
recordid cdi_osti_scitechconnect_1606655
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals
subjects 639/766/119
639/766/119/997
Computer simulation
Condensed Matter Physics
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Elementary excitations
Entangled states
Excitation
Insulators
Ising model
Magnetic permeability
Magnetic properties and materials
MATERIALS SCIENCE
Neutrons
Physics
Physics and Astronomy
Quantum Physics
Ruthenium trichloride
Spin liquid
Structural Materials
Surfaces and Interfaces
Thin Films
title The range of non-Kitaev terms and fractional particles in α-RuCl3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20range%20of%20non-Kitaev%20terms%20and%20fractional%20particles%20in%20%CE%B1-RuCl3&rft.jtitle=npj%20quantum%20materials&rft.au=Wang,%20Yiping&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-03-04&rft.volume=5&rft.issue=1&rft.artnum=14&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-020-0216-6&rft_dat=%3Cproquest_osti_%3E2488775946%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377441270&rft_id=info:pmid/&rfr_iscdi=true