The range of non-Kitaev terms and fractional particles in α-RuCl3
Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are n...
Gespeichert in:
Veröffentlicht in: | npj quantum materials 2020-03, Vol.5 (1), Article 14 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | npj quantum materials |
container_volume | 5 |
creator | Wang, Yiping Osterhoudt, Gavin B. Tian, Yao Lampen-Kelley, Paige Banerjee, Arnab Goldstein, Thomas Yan, Jun Knolle, Johannes Ji, Huiwen Cava, Robert J. Nasu, Joji Motome, Yukitoshi Nagler, Stephen E. Mandrus, David Burch, Kenneth S. |
description | Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are non-local in terms of spin flips. A key challenge in real materials is identifying the relative size of the non-Kitaev terms and their role in the emergence or suppression of fractional excitations. Here, we identify the energy and temperature boundaries of non-Kitaev interactions by direct comparison of the Raman susceptibility of
α
-RuCl
3
with quantum Monte Carlo (QMC) results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the magnetic excitations, which is given by creating a pair of fermionic quasiparticles. Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results and focus on the use of the Raman susceptibility provide a stringent new test for future theoretical and experimental studies of QSLs. |
doi_str_mv | 10.1038/s41535-020-0216-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1606655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2488775946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-cc24366749f866a94c17e08d80603a9b170a13e1e2824834afbce1a43188c5453</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWGofwF3QdTR3kkkySy3-oSBIXYc0zdgpbVKTVPCxfBGfyQwj6EYXl3sX5_u4HISOgZ4BZeo8cahZTWhFy4AgYg-NKtZIwgVX-7_uQzRJaUVpoUBxIUbocrZ0OBr_4nBosQ-e3HfZuDecXdwkbPwCt9HY3AVv1nhrYu7s2iXcefz5QZ520zU7QgetWSc3-d5j9Hx9NZvekofHm7vpxQOxHHgm1lacCSF50yohTMMtSEfVQlFBmWnmIKkB5sBVquKKcdPOrQPDGShla16zMToZekPKnU62y84ubfDe2axBUCHqHjodoG0MrzuXsl6FXSy_J11alZR1w8W_FJOSc6gkLRQMlI0hpehavY3dxsR3DVT34vUgXhfxuhev--ZqyKTCFqvxp_nv0BfSDoHY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2377441270</pqid></control><display><type>article</type><title>The range of non-Kitaev terms and fractional particles in α-RuCl3</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Yiping ; Osterhoudt, Gavin B. ; Tian, Yao ; Lampen-Kelley, Paige ; Banerjee, Arnab ; Goldstein, Thomas ; Yan, Jun ; Knolle, Johannes ; Ji, Huiwen ; Cava, Robert J. ; Nasu, Joji ; Motome, Yukitoshi ; Nagler, Stephen E. ; Mandrus, David ; Burch, Kenneth S.</creator><creatorcontrib>Wang, Yiping ; Osterhoudt, Gavin B. ; Tian, Yao ; Lampen-Kelley, Paige ; Banerjee, Arnab ; Goldstein, Thomas ; Yan, Jun ; Knolle, Johannes ; Ji, Huiwen ; Cava, Robert J. ; Nasu, Joji ; Motome, Yukitoshi ; Nagler, Stephen E. ; Mandrus, David ; Burch, Kenneth S. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Boston College, Chestnut Hill, MA (United States)</creatorcontrib><description>Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are non-local in terms of spin flips. A key challenge in real materials is identifying the relative size of the non-Kitaev terms and their role in the emergence or suppression of fractional excitations. Here, we identify the energy and temperature boundaries of non-Kitaev interactions by direct comparison of the Raman susceptibility of
α
-RuCl
3
with quantum Monte Carlo (QMC) results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the magnetic excitations, which is given by creating a pair of fermionic quasiparticles. Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results and focus on the use of the Raman susceptibility provide a stringent new test for future theoretical and experimental studies of QSLs.</description><identifier>ISSN: 2397-4648</identifier><identifier>EISSN: 2397-4648</identifier><identifier>DOI: 10.1038/s41535-020-0216-6</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119 ; 639/766/119/997 ; Computer simulation ; Condensed Matter Physics ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Elementary excitations ; Entangled states ; Excitation ; Insulators ; Ising model ; Magnetic permeability ; Magnetic properties and materials ; MATERIALS SCIENCE ; Neutrons ; Physics ; Physics and Astronomy ; Quantum Physics ; Ruthenium trichloride ; Spin liquid ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>npj quantum materials, 2020-03, Vol.5 (1), Article 14</ispartof><rights>The Author(s) 2020</rights><rights>This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-cc24366749f866a94c17e08d80603a9b170a13e1e2824834afbce1a43188c5453</citedby><cites>FETCH-LOGICAL-c414t-cc24366749f866a94c17e08d80603a9b170a13e1e2824834afbce1a43188c5453</cites><orcidid>0000-0003-1576-0785 ; 0000-0003-2421-8496 ; 0000-0001-8618-7272 ; 0000-0003-0707-366X ; 0000-0002-3088-6071 ; 0000-0002-7234-2339 ; 0000-0003-3861-4633 ; 0000000272342339 ; 0000000186187272 ; 000000030707366X ; 0000000315760785 ; 0000000230886071 ; 0000000324218496 ; 0000000338614633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41535-020-0216-6$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1038/s41535-020-0216-6$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,864,885,27923,27924,41119,42188,51575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1606655$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Osterhoudt, Gavin B.</creatorcontrib><creatorcontrib>Tian, Yao</creatorcontrib><creatorcontrib>Lampen-Kelley, Paige</creatorcontrib><creatorcontrib>Banerjee, Arnab</creatorcontrib><creatorcontrib>Goldstein, Thomas</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Knolle, Johannes</creatorcontrib><creatorcontrib>Ji, Huiwen</creatorcontrib><creatorcontrib>Cava, Robert J.</creatorcontrib><creatorcontrib>Nasu, Joji</creatorcontrib><creatorcontrib>Motome, Yukitoshi</creatorcontrib><creatorcontrib>Nagler, Stephen E.</creatorcontrib><creatorcontrib>Mandrus, David</creatorcontrib><creatorcontrib>Burch, Kenneth S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Boston College, Chestnut Hill, MA (United States)</creatorcontrib><title>The range of non-Kitaev terms and fractional particles in α-RuCl3</title><title>npj quantum materials</title><addtitle>npj Quantum Mater</addtitle><description>Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are non-local in terms of spin flips. A key challenge in real materials is identifying the relative size of the non-Kitaev terms and their role in the emergence or suppression of fractional excitations. Here, we identify the energy and temperature boundaries of non-Kitaev interactions by direct comparison of the Raman susceptibility of
α
-RuCl
3
with quantum Monte Carlo (QMC) results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the magnetic excitations, which is given by creating a pair of fermionic quasiparticles. Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results and focus on the use of the Raman susceptibility provide a stringent new test for future theoretical and experimental studies of QSLs.</description><subject>639/766/119</subject><subject>639/766/119/997</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Elementary excitations</subject><subject>Entangled states</subject><subject>Excitation</subject><subject>Insulators</subject><subject>Ising model</subject><subject>Magnetic permeability</subject><subject>Magnetic properties and materials</subject><subject>MATERIALS SCIENCE</subject><subject>Neutrons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Ruthenium trichloride</subject><subject>Spin liquid</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>2397-4648</issn><issn>2397-4648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEURoMoWGofwF3QdTR3kkkySy3-oSBIXYc0zdgpbVKTVPCxfBGfyQwj6EYXl3sX5_u4HISOgZ4BZeo8cahZTWhFy4AgYg-NKtZIwgVX-7_uQzRJaUVpoUBxIUbocrZ0OBr_4nBosQ-e3HfZuDecXdwkbPwCt9HY3AVv1nhrYu7s2iXcefz5QZ520zU7QgetWSc3-d5j9Hx9NZvekofHm7vpxQOxHHgm1lacCSF50yohTMMtSEfVQlFBmWnmIKkB5sBVquKKcdPOrQPDGShla16zMToZekPKnU62y84ubfDe2axBUCHqHjodoG0MrzuXsl6FXSy_J11alZR1w8W_FJOSc6gkLRQMlI0hpehavY3dxsR3DVT34vUgXhfxuhev--ZqyKTCFqvxp_nv0BfSDoHY</recordid><startdate>20200304</startdate><enddate>20200304</enddate><creator>Wang, Yiping</creator><creator>Osterhoudt, Gavin B.</creator><creator>Tian, Yao</creator><creator>Lampen-Kelley, Paige</creator><creator>Banerjee, Arnab</creator><creator>Goldstein, Thomas</creator><creator>Yan, Jun</creator><creator>Knolle, Johannes</creator><creator>Ji, Huiwen</creator><creator>Cava, Robert J.</creator><creator>Nasu, Joji</creator><creator>Motome, Yukitoshi</creator><creator>Nagler, Stephen E.</creator><creator>Mandrus, David</creator><creator>Burch, Kenneth S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1576-0785</orcidid><orcidid>https://orcid.org/0000-0003-2421-8496</orcidid><orcidid>https://orcid.org/0000-0001-8618-7272</orcidid><orcidid>https://orcid.org/0000-0003-0707-366X</orcidid><orcidid>https://orcid.org/0000-0002-3088-6071</orcidid><orcidid>https://orcid.org/0000-0002-7234-2339</orcidid><orcidid>https://orcid.org/0000-0003-3861-4633</orcidid><orcidid>https://orcid.org/0000000272342339</orcidid><orcidid>https://orcid.org/0000000186187272</orcidid><orcidid>https://orcid.org/000000030707366X</orcidid><orcidid>https://orcid.org/0000000315760785</orcidid><orcidid>https://orcid.org/0000000230886071</orcidid><orcidid>https://orcid.org/0000000324218496</orcidid><orcidid>https://orcid.org/0000000338614633</orcidid></search><sort><creationdate>20200304</creationdate><title>The range of non-Kitaev terms and fractional particles in α-RuCl3</title><author>Wang, Yiping ; Osterhoudt, Gavin B. ; Tian, Yao ; Lampen-Kelley, Paige ; Banerjee, Arnab ; Goldstein, Thomas ; Yan, Jun ; Knolle, Johannes ; Ji, Huiwen ; Cava, Robert J. ; Nasu, Joji ; Motome, Yukitoshi ; Nagler, Stephen E. ; Mandrus, David ; Burch, Kenneth S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-cc24366749f866a94c17e08d80603a9b170a13e1e2824834afbce1a43188c5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/119</topic><topic>639/766/119/997</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Elementary excitations</topic><topic>Entangled states</topic><topic>Excitation</topic><topic>Insulators</topic><topic>Ising model</topic><topic>Magnetic permeability</topic><topic>Magnetic properties and materials</topic><topic>MATERIALS SCIENCE</topic><topic>Neutrons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Ruthenium trichloride</topic><topic>Spin liquid</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yiping</creatorcontrib><creatorcontrib>Osterhoudt, Gavin B.</creatorcontrib><creatorcontrib>Tian, Yao</creatorcontrib><creatorcontrib>Lampen-Kelley, Paige</creatorcontrib><creatorcontrib>Banerjee, Arnab</creatorcontrib><creatorcontrib>Goldstein, Thomas</creatorcontrib><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Knolle, Johannes</creatorcontrib><creatorcontrib>Ji, Huiwen</creatorcontrib><creatorcontrib>Cava, Robert J.</creatorcontrib><creatorcontrib>Nasu, Joji</creatorcontrib><creatorcontrib>Motome, Yukitoshi</creatorcontrib><creatorcontrib>Nagler, Stephen E.</creatorcontrib><creatorcontrib>Mandrus, David</creatorcontrib><creatorcontrib>Burch, Kenneth S.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Boston College, Chestnut Hill, MA (United States)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>npj quantum materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yiping</au><au>Osterhoudt, Gavin B.</au><au>Tian, Yao</au><au>Lampen-Kelley, Paige</au><au>Banerjee, Arnab</au><au>Goldstein, Thomas</au><au>Yan, Jun</au><au>Knolle, Johannes</au><au>Ji, Huiwen</au><au>Cava, Robert J.</au><au>Nasu, Joji</au><au>Motome, Yukitoshi</au><au>Nagler, Stephen E.</au><au>Mandrus, David</au><au>Burch, Kenneth S.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Boston College, Chestnut Hill, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The range of non-Kitaev terms and fractional particles in α-RuCl3</atitle><jtitle>npj quantum materials</jtitle><stitle>npj Quantum Mater</stitle><date>2020-03-04</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><artnum>14</artnum><issn>2397-4648</issn><eissn>2397-4648</eissn><abstract>Significant efforts have focused on the magnetic excitations of relativistic Mott insulators, predicted to realize the Kitaev quantum spin liquid (QSL). This exactly solvable model involves a highly entangled state resulting from bond-dependent Ising interactions that produce excitations which are non-local in terms of spin flips. A key challenge in real materials is identifying the relative size of the non-Kitaev terms and their role in the emergence or suppression of fractional excitations. Here, we identify the energy and temperature boundaries of non-Kitaev interactions by direct comparison of the Raman susceptibility of
α
-RuCl
3
with quantum Monte Carlo (QMC) results for the Kitaev QSL. Moreover, we further confirm the fractional nature of the magnetic excitations, which is given by creating a pair of fermionic quasiparticles. Interestingly, this fermionic response remains valid in the non-Kitaev range. Our results and focus on the use of the Raman susceptibility provide a stringent new test for future theoretical and experimental studies of QSLs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41535-020-0216-6</doi><orcidid>https://orcid.org/0000-0003-1576-0785</orcidid><orcidid>https://orcid.org/0000-0003-2421-8496</orcidid><orcidid>https://orcid.org/0000-0001-8618-7272</orcidid><orcidid>https://orcid.org/0000-0003-0707-366X</orcidid><orcidid>https://orcid.org/0000-0002-3088-6071</orcidid><orcidid>https://orcid.org/0000-0002-7234-2339</orcidid><orcidid>https://orcid.org/0000-0003-3861-4633</orcidid><orcidid>https://orcid.org/0000000272342339</orcidid><orcidid>https://orcid.org/0000000186187272</orcidid><orcidid>https://orcid.org/000000030707366X</orcidid><orcidid>https://orcid.org/0000000315760785</orcidid><orcidid>https://orcid.org/0000000230886071</orcidid><orcidid>https://orcid.org/0000000324218496</orcidid><orcidid>https://orcid.org/0000000338614633</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-4648 |
ispartof | npj quantum materials, 2020-03, Vol.5 (1), Article 14 |
issn | 2397-4648 2397-4648 |
language | eng |
recordid | cdi_osti_scitechconnect_1606655 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals |
subjects | 639/766/119 639/766/119/997 Computer simulation Condensed Matter Physics CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Elementary excitations Entangled states Excitation Insulators Ising model Magnetic permeability Magnetic properties and materials MATERIALS SCIENCE Neutrons Physics Physics and Astronomy Quantum Physics Ruthenium trichloride Spin liquid Structural Materials Surfaces and Interfaces Thin Films |
title | The range of non-Kitaev terms and fractional particles in α-RuCl3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T09%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20range%20of%20non-Kitaev%20terms%20and%20fractional%20particles%20in%20%CE%B1-RuCl3&rft.jtitle=npj%20quantum%20materials&rft.au=Wang,%20Yiping&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-03-04&rft.volume=5&rft.issue=1&rft.artnum=14&rft.issn=2397-4648&rft.eissn=2397-4648&rft_id=info:doi/10.1038/s41535-020-0216-6&rft_dat=%3Cproquest_osti_%3E2488775946%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2377441270&rft_id=info:pmid/&rfr_iscdi=true |