The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry

Force can induce remarkable non-destructive transformations along a polymer, but we have a limited understanding of the energy transduction and product distribution in tandem mechanochemical reactions. Ladderanes consist of multiple fused cyclobutane rings and have recently been used as monomeric mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2020-03, Vol.12 (3), p.302-309
Hauptverfasser: Chen, Zhixing, Zhu, Xiaolei, Yang, Jinghui, Mercer, Jaron A. M., Burns, Noah Z., Martinez, Todd J., Xia, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 309
container_issue 3
container_start_page 302
container_title Nature chemistry
container_volume 12
creator Chen, Zhixing
Zhu, Xiaolei
Yang, Jinghui
Mercer, Jaron A. M.
Burns, Noah Z.
Martinez, Todd J.
Xia, Yan
description Force can induce remarkable non-destructive transformations along a polymer, but we have a limited understanding of the energy transduction and product distribution in tandem mechanochemical reactions. Ladderanes consist of multiple fused cyclobutane rings and have recently been used as monomeric motifs to develop polymers that drastically change their properties in response to force. Here we show that [4]-ladderane always exhibits ‘all-or-none’ cascade mechanoactivations and the same stereochemical distribution of the generated dienes under various conditions and within different polymer backbones. Transition state theory fails to capture the reaction kinetics and explain the observed stereochemical distributions. Ab initio steered molecular dynamics reveals unique non-equilibrium dynamic effects: energy transduction from the first cycloreversion substantially accelerates the second cycloreversion, and bifurcation on the force-modified potential energy surface leads to the product distributions. Our findings illustrate the rich chemistry in closely coupled multi-mechanophores and an exciting potential for effective energy transduction in tandem mechanochemical reactions. The mechanochemical activation of [4]-ladderane/ene has been studied and found to exhibit cascade unzipping and a consistent stereochemical distribution of products under various conditions and in different polymer backbones. Ab initio steered molecular dynamics simulations revealed unique non-equilibrium dynamic effects in the mechanochemistry of ladderane, cascade activation and reaction pathway bifurcation.
doi_str_mv 10.1038/s41557-019-0396-5
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1605279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2334251940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-28e90c0dc96c94265bfcae1b688e2d08c0431a3bc65189c9116231c6f1f239443</originalsourceid><addsrcrecordid>eNp1kU9P3DAQxa2qqNBtP0AvyGovvYR6_C_xEaG2ICG40LPlnUzYoI2z2AnS8ulrFAoSUk8eyb9582YeY19AnIBQzY-swZi6EuAqoZytzDt2BLUxlVbavX-plThkH3O-E8IaBfYDO1TgRK2FOmJXNxviGDKGlvgcH_vdro-3fOz4NrQtpRCJJ3qgsM283ccw9Mip6winzPvIB8JNiCNuaOjzlPaf2EFXUPr8_K7Yn18_b87Oq8vr3xdnp5cVamWnSjbkBIoWnUWnpTXrDgPB2jYNyVY0KLSCoNZoDTQOHYCVCtB20EnltFYr9nXRHfPU-4z9VIzgGGMx5sEKI2tXoO8LtEvj_Ux58sUk0nZblhrn7KVSWhpw5RAr9u0NejfOKZYVCmWtFco2daFgoTCNOSfq_C71Q0h7D8I_JeKXRHxJxD8l4k3pOX5WntcDtS8d_yIogFyAXL7iLaXX0f9X_QtrRZRz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2366603687</pqid></control><display><type>article</type><title>The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Zhixing ; Zhu, Xiaolei ; Yang, Jinghui ; Mercer, Jaron A. M. ; Burns, Noah Z. ; Martinez, Todd J. ; Xia, Yan</creator><creatorcontrib>Chen, Zhixing ; Zhu, Xiaolei ; Yang, Jinghui ; Mercer, Jaron A. M. ; Burns, Noah Z. ; Martinez, Todd J. ; Xia, Yan ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Force can induce remarkable non-destructive transformations along a polymer, but we have a limited understanding of the energy transduction and product distribution in tandem mechanochemical reactions. Ladderanes consist of multiple fused cyclobutane rings and have recently been used as monomeric motifs to develop polymers that drastically change their properties in response to force. Here we show that [4]-ladderane always exhibits ‘all-or-none’ cascade mechanoactivations and the same stereochemical distribution of the generated dienes under various conditions and within different polymer backbones. Transition state theory fails to capture the reaction kinetics and explain the observed stereochemical distributions. Ab initio steered molecular dynamics reveals unique non-equilibrium dynamic effects: energy transduction from the first cycloreversion substantially accelerates the second cycloreversion, and bifurcation on the force-modified potential energy surface leads to the product distributions. Our findings illustrate the rich chemistry in closely coupled multi-mechanophores and an exciting potential for effective energy transduction in tandem mechanochemical reactions. The mechanochemical activation of [4]-ladderane/ene has been studied and found to exhibit cascade unzipping and a consistent stereochemical distribution of products under various conditions and in different polymer backbones. Ab initio steered molecular dynamics simulations revealed unique non-equilibrium dynamic effects in the mechanochemistry of ladderane, cascade activation and reaction pathway bifurcation.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-019-0396-5</identifier><identifier>PMID: 31907403</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/934 ; 639/638/455 ; 639/638/563/606 ; Analytical Chemistry ; Bifurcations ; Biochemistry ; Cascade chemical reactions ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cyclobutane ; Dienes ; Energy distribution ; Energy transduction ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Molecular dynamics ; Organic Chemistry ; Physical Chemistry ; Polymers ; Potential energy ; Reaction kinetics</subject><ispartof>Nature chemistry, 2020-03, Vol.12 (3), p.302-309</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-28e90c0dc96c94265bfcae1b688e2d08c0431a3bc65189c9116231c6f1f239443</citedby><cites>FETCH-LOGICAL-c436t-28e90c0dc96c94265bfcae1b688e2d08c0431a3bc65189c9116231c6f1f239443</cites><orcidid>0000-0002-7825-4815 ; 0000-0001-5962-7359 ; 0000-0002-4798-8947 ; 0000-0002-5298-748X ; 0000000278254815 ; 000000025298748X ; 0000000159627359 ; 0000000247988947</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-019-0396-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-019-0396-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31907403$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1605279$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhixing</creatorcontrib><creatorcontrib>Zhu, Xiaolei</creatorcontrib><creatorcontrib>Yang, Jinghui</creatorcontrib><creatorcontrib>Mercer, Jaron A. M.</creatorcontrib><creatorcontrib>Burns, Noah Z.</creatorcontrib><creatorcontrib>Martinez, Todd J.</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Force can induce remarkable non-destructive transformations along a polymer, but we have a limited understanding of the energy transduction and product distribution in tandem mechanochemical reactions. Ladderanes consist of multiple fused cyclobutane rings and have recently been used as monomeric motifs to develop polymers that drastically change their properties in response to force. Here we show that [4]-ladderane always exhibits ‘all-or-none’ cascade mechanoactivations and the same stereochemical distribution of the generated dienes under various conditions and within different polymer backbones. Transition state theory fails to capture the reaction kinetics and explain the observed stereochemical distributions. Ab initio steered molecular dynamics reveals unique non-equilibrium dynamic effects: energy transduction from the first cycloreversion substantially accelerates the second cycloreversion, and bifurcation on the force-modified potential energy surface leads to the product distributions. Our findings illustrate the rich chemistry in closely coupled multi-mechanophores and an exciting potential for effective energy transduction in tandem mechanochemical reactions. The mechanochemical activation of [4]-ladderane/ene has been studied and found to exhibit cascade unzipping and a consistent stereochemical distribution of products under various conditions and in different polymer backbones. Ab initio steered molecular dynamics simulations revealed unique non-equilibrium dynamic effects in the mechanochemistry of ladderane, cascade activation and reaction pathway bifurcation.</description><subject>639/638/403/934</subject><subject>639/638/455</subject><subject>639/638/563/606</subject><subject>Analytical Chemistry</subject><subject>Bifurcations</subject><subject>Biochemistry</subject><subject>Cascade chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cyclobutane</subject><subject>Dienes</subject><subject>Energy distribution</subject><subject>Energy transduction</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Molecular dynamics</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Polymers</subject><subject>Potential energy</subject><subject>Reaction kinetics</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9P3DAQxa2qqNBtP0AvyGovvYR6_C_xEaG2ICG40LPlnUzYoI2z2AnS8ulrFAoSUk8eyb9582YeY19AnIBQzY-swZi6EuAqoZytzDt2BLUxlVbavX-plThkH3O-E8IaBfYDO1TgRK2FOmJXNxviGDKGlvgcH_vdro-3fOz4NrQtpRCJJ3qgsM283ccw9Mip6winzPvIB8JNiCNuaOjzlPaf2EFXUPr8_K7Yn18_b87Oq8vr3xdnp5cVamWnSjbkBIoWnUWnpTXrDgPB2jYNyVY0KLSCoNZoDTQOHYCVCtB20EnltFYr9nXRHfPU-4z9VIzgGGMx5sEKI2tXoO8LtEvj_Ux58sUk0nZblhrn7KVSWhpw5RAr9u0NejfOKZYVCmWtFco2daFgoTCNOSfq_C71Q0h7D8I_JeKXRHxJxD8l4k3pOX5WntcDtS8d_yIogFyAXL7iLaXX0f9X_QtrRZRz</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Chen, Zhixing</creator><creator>Zhu, Xiaolei</creator><creator>Yang, Jinghui</creator><creator>Mercer, Jaron A. M.</creator><creator>Burns, Noah Z.</creator><creator>Martinez, Todd J.</creator><creator>Xia, Yan</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7825-4815</orcidid><orcidid>https://orcid.org/0000-0001-5962-7359</orcidid><orcidid>https://orcid.org/0000-0002-4798-8947</orcidid><orcidid>https://orcid.org/0000-0002-5298-748X</orcidid><orcidid>https://orcid.org/0000000278254815</orcidid><orcidid>https://orcid.org/000000025298748X</orcidid><orcidid>https://orcid.org/0000000159627359</orcidid><orcidid>https://orcid.org/0000000247988947</orcidid></search><sort><creationdate>20200301</creationdate><title>The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry</title><author>Chen, Zhixing ; Zhu, Xiaolei ; Yang, Jinghui ; Mercer, Jaron A. M. ; Burns, Noah Z. ; Martinez, Todd J. ; Xia, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-28e90c0dc96c94265bfcae1b688e2d08c0431a3bc65189c9116231c6f1f239443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/638/403/934</topic><topic>639/638/455</topic><topic>639/638/563/606</topic><topic>Analytical Chemistry</topic><topic>Bifurcations</topic><topic>Biochemistry</topic><topic>Cascade chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cyclobutane</topic><topic>Dienes</topic><topic>Energy distribution</topic><topic>Energy transduction</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Molecular dynamics</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Polymers</topic><topic>Potential energy</topic><topic>Reaction kinetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhixing</creatorcontrib><creatorcontrib>Zhu, Xiaolei</creatorcontrib><creatorcontrib>Yang, Jinghui</creatorcontrib><creatorcontrib>Mercer, Jaron A. M.</creatorcontrib><creatorcontrib>Burns, Noah Z.</creatorcontrib><creatorcontrib>Martinez, Todd J.</creatorcontrib><creatorcontrib>Xia, Yan</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhixing</au><au>Zhu, Xiaolei</au><au>Yang, Jinghui</au><au>Mercer, Jaron A. M.</au><au>Burns, Noah Z.</au><au>Martinez, Todd J.</au><au>Xia, Yan</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>12</volume><issue>3</issue><spage>302</spage><epage>309</epage><pages>302-309</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Force can induce remarkable non-destructive transformations along a polymer, but we have a limited understanding of the energy transduction and product distribution in tandem mechanochemical reactions. Ladderanes consist of multiple fused cyclobutane rings and have recently been used as monomeric motifs to develop polymers that drastically change their properties in response to force. Here we show that [4]-ladderane always exhibits ‘all-or-none’ cascade mechanoactivations and the same stereochemical distribution of the generated dienes under various conditions and within different polymer backbones. Transition state theory fails to capture the reaction kinetics and explain the observed stereochemical distributions. Ab initio steered molecular dynamics reveals unique non-equilibrium dynamic effects: energy transduction from the first cycloreversion substantially accelerates the second cycloreversion, and bifurcation on the force-modified potential energy surface leads to the product distributions. Our findings illustrate the rich chemistry in closely coupled multi-mechanophores and an exciting potential for effective energy transduction in tandem mechanochemical reactions. The mechanochemical activation of [4]-ladderane/ene has been studied and found to exhibit cascade unzipping and a consistent stereochemical distribution of products under various conditions and in different polymer backbones. Ab initio steered molecular dynamics simulations revealed unique non-equilibrium dynamic effects in the mechanochemistry of ladderane, cascade activation and reaction pathway bifurcation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31907403</pmid><doi>10.1038/s41557-019-0396-5</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7825-4815</orcidid><orcidid>https://orcid.org/0000-0001-5962-7359</orcidid><orcidid>https://orcid.org/0000-0002-4798-8947</orcidid><orcidid>https://orcid.org/0000-0002-5298-748X</orcidid><orcidid>https://orcid.org/0000000278254815</orcidid><orcidid>https://orcid.org/000000025298748X</orcidid><orcidid>https://orcid.org/0000000159627359</orcidid><orcidid>https://orcid.org/0000000247988947</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2020-03, Vol.12 (3), p.302-309
issn 1755-4330
1755-4349
language eng
recordid cdi_osti_scitechconnect_1605279
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 639/638/403/934
639/638/455
639/638/563/606
Analytical Chemistry
Bifurcations
Biochemistry
Cascade chemical reactions
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cyclobutane
Dienes
Energy distribution
Energy transduction
Inorganic Chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Molecular dynamics
Organic Chemistry
Physical Chemistry
Polymers
Potential energy
Reaction kinetics
title The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A35%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20cascade%20unzipping%20of%20ladderane%20reveals%20dynamic%20effects%20in%20mechanochemistry&rft.jtitle=Nature%20chemistry&rft.au=Chen,%20Zhixing&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-03-01&rft.volume=12&rft.issue=3&rft.spage=302&rft.epage=309&rft.pages=302-309&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-019-0396-5&rft_dat=%3Cproquest_osti_%3E2334251940%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2366603687&rft_id=info:pmid/31907403&rfr_iscdi=true