Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system
Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials 1 . ARPES directly probes fermion pairing, and hence is a natural techniqu...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-01, Vol.16 (1), p.26-31 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31 |
---|---|
container_issue | 1 |
container_start_page | 26 |
container_title | Nature physics |
container_volume | 16 |
creator | Brown, Peter T. Guardado-Sanchez, Elmer Spar, Benjamin M. Huang, Edwin W. Devereaux, Thomas P. Bakr, Waseem S. |
description | Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials
1
. ARPES directly probes fermion pairing, and hence is a natural technique to study the development of superconductivity in systems ranging from high-temperature superconductors to unitary Fermi gases. In these systems, a remnant gap-like feature persists in the normal state
2
. Developing a quantitative understanding of these so-called pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here, we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi–Hubbard system across the BCS–BEC crossover and comparing the results to those of quantum Monte Carlo calculations. We find evidence for a pseudogap that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model, which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments
3
.
A technique analogous to angle-resolved photoemission spectroscopy used in materials characterization has been developed for interacting Fermi gases in an optical lattice, providing information on the single-particle excitations in a many-body system. |
doi_str_mv | 10.1038/s41567-019-0696-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1605241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342969217</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-4539654caec570ce7c5c1cb995680abceea78dfe9e6c8ca9cf9cf6b5e0f1ff813</originalsourceid><addsrcrecordid>eNpFkM1Kw0AUhQdRsFYfwF3Q9ehM5ieZZSmtFQpudD0ktzdtSpuJc1OhO9_BN_RJTIkoHLhn8XE5fIzdSvEghcofSUtjMy6k48I6y8UZG8lMG57qXJ7_9UxdsiuirRA6tVKN2GzSrHfII1LYfeAqaTehC7ivierQJNQidDEQhPaYhCopkjnGff39-bU4lGURVwkdqcP9Nbuoih3hze8ds7f57HW64MuXp-fpZMmDzFXHtVHOGg0FgskEYAYGJJTOGZuLogTEIstXFTq0kEPhoOpjS4OiklWVSzVmd8PfQF3tCeoOYQOhafqZXlphUn2C7geojeH9gNT5bTjEpt_lU6VTZ10qs55KB4raWDdrjP-UFP7k1A9Ofe_Un5x6oX4Ax8lr6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342969217</pqid></control><display><type>article</type><title>Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Brown, Peter T. ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Huang, Edwin W. ; Devereaux, Thomas P. ; Bakr, Waseem S.</creator><creatorcontrib>Brown, Peter T. ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Huang, Edwin W. ; Devereaux, Thomas P. ; Bakr, Waseem S. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials
1
. ARPES directly probes fermion pairing, and hence is a natural technique to study the development of superconductivity in systems ranging from high-temperature superconductors to unitary Fermi gases. In these systems, a remnant gap-like feature persists in the normal state
2
. Developing a quantitative understanding of these so-called pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here, we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi–Hubbard system across the BCS–BEC crossover and comparing the results to those of quantum Monte Carlo calculations. We find evidence for a pseudogap that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model, which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments
3
.
A technique analogous to angle-resolved photoemission spectroscopy used in materials characterization has been developed for interacting Fermi gases in an optical lattice, providing information on the single-particle excitations in a many-body system.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0696-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1125 ; 639/766/483/3926 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Computer simulation ; Condensed Matter Physics ; Excitation ; Fermi gases ; Fermions ; High temperature ; High temperature superconductors ; Letter ; Mathematical and Computational Physics ; Molecular ; Monte Carlo simulation ; Optical and Plasma Physics ; Optical lattices ; Photoelectric emission ; Photoelectron spectroscopy ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum theory ; Spectroscopy ; Spectrum analysis ; Superconductivity ; Superfluidity ; Theoretical</subject><ispartof>Nature physics, 2020-01, Vol.16 (1), p.26-31</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-o183t-4539654caec570ce7c5c1cb995680abceea78dfe9e6c8ca9cf9cf6b5e0f1ff813</cites><orcidid>0000-0002-6250-9529 ; 0000-0002-2060-6398 ; 0000-0003-1901-8262 ; 0000000319018262 ; 0000000220606398 ; 0000000262509529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1605241$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Peter T.</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Huang, Edwin W.</creatorcontrib><creatorcontrib>Devereaux, Thomas P.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials
1
. ARPES directly probes fermion pairing, and hence is a natural technique to study the development of superconductivity in systems ranging from high-temperature superconductors to unitary Fermi gases. In these systems, a remnant gap-like feature persists in the normal state
2
. Developing a quantitative understanding of these so-called pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here, we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi–Hubbard system across the BCS–BEC crossover and comparing the results to those of quantum Monte Carlo calculations. We find evidence for a pseudogap that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model, which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments
3
.
A technique analogous to angle-resolved photoemission spectroscopy used in materials characterization has been developed for interacting Fermi gases in an optical lattice, providing information on the single-particle excitations in a many-body system.</description><subject>639/766/36/1125</subject><subject>639/766/483/3926</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Excitation</subject><subject>Fermi gases</subject><subject>Fermions</subject><subject>High temperature</subject><subject>High temperature superconductors</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Monte Carlo simulation</subject><subject>Optical and Plasma Physics</subject><subject>Optical lattices</subject><subject>Photoelectric emission</subject><subject>Photoelectron spectroscopy</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum theory</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkM1Kw0AUhQdRsFYfwF3Q9ehM5ieZZSmtFQpudD0ktzdtSpuJc1OhO9_BN_RJTIkoHLhn8XE5fIzdSvEghcofSUtjMy6k48I6y8UZG8lMG57qXJ7_9UxdsiuirRA6tVKN2GzSrHfII1LYfeAqaTehC7ivierQJNQidDEQhPaYhCopkjnGff39-bU4lGURVwkdqcP9Nbuoih3hze8ds7f57HW64MuXp-fpZMmDzFXHtVHOGg0FgskEYAYGJJTOGZuLogTEIstXFTq0kEPhoOpjS4OiklWVSzVmd8PfQF3tCeoOYQOhafqZXlphUn2C7geojeH9gNT5bTjEpt_lU6VTZ10qs55KB4raWDdrjP-UFP7k1A9Ofe_Un5x6oX4Ax8lr6w</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Brown, Peter T.</creator><creator>Guardado-Sanchez, Elmer</creator><creator>Spar, Benjamin M.</creator><creator>Huang, Edwin W.</creator><creator>Devereaux, Thomas P.</creator><creator>Bakr, Waseem S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6250-9529</orcidid><orcidid>https://orcid.org/0000-0002-2060-6398</orcidid><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000000319018262</orcidid><orcidid>https://orcid.org/0000000220606398</orcidid><orcidid>https://orcid.org/0000000262509529</orcidid></search><sort><creationdate>20200101</creationdate><title>Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system</title><author>Brown, Peter T. ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Huang, Edwin W. ; Devereaux, Thomas P. ; Bakr, Waseem S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-4539654caec570ce7c5c1cb995680abceea78dfe9e6c8ca9cf9cf6b5e0f1ff813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/36/1125</topic><topic>639/766/483/3926</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Excitation</topic><topic>Fermi gases</topic><topic>Fermions</topic><topic>High temperature</topic><topic>High temperature superconductors</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Monte Carlo simulation</topic><topic>Optical and Plasma Physics</topic><topic>Optical lattices</topic><topic>Photoelectric emission</topic><topic>Photoelectron spectroscopy</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum theory</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Peter T.</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Huang, Edwin W.</creatorcontrib><creatorcontrib>Devereaux, Thomas P.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Peter T.</au><au>Guardado-Sanchez, Elmer</au><au>Spar, Benjamin M.</au><au>Huang, Edwin W.</au><au>Devereaux, Thomas P.</au><au>Bakr, Waseem S.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>26</spage><epage>31</epage><pages>26-31</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials
1
. ARPES directly probes fermion pairing, and hence is a natural technique to study the development of superconductivity in systems ranging from high-temperature superconductors to unitary Fermi gases. In these systems, a remnant gap-like feature persists in the normal state
2
. Developing a quantitative understanding of these so-called pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here, we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi–Hubbard system across the BCS–BEC crossover and comparing the results to those of quantum Monte Carlo calculations. We find evidence for a pseudogap that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model, which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments
3
.
A technique analogous to angle-resolved photoemission spectroscopy used in materials characterization has been developed for interacting Fermi gases in an optical lattice, providing information on the single-particle excitations in a many-body system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0696-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6250-9529</orcidid><orcidid>https://orcid.org/0000-0002-2060-6398</orcidid><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000000319018262</orcidid><orcidid>https://orcid.org/0000000220606398</orcidid><orcidid>https://orcid.org/0000000262509529</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-01, Vol.16 (1), p.26-31 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_osti_scitechconnect_1605241 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/766/36/1125 639/766/483/3926 Atomic Classical and Continuum Physics Complex Systems Computer simulation Condensed Matter Physics Excitation Fermi gases Fermions High temperature High temperature superconductors Letter Mathematical and Computational Physics Molecular Monte Carlo simulation Optical and Plasma Physics Optical lattices Photoelectric emission Photoelectron spectroscopy Physics Physics and Astronomy PHYSICS OF ELEMENTARY PARTICLES AND FIELDS Quantum theory Spectroscopy Spectrum analysis Superconductivity Superfluidity Theoretical |
title | Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angle-resolved%20photoemission%20spectroscopy%20of%20a%20Fermi%E2%80%93Hubbard%20system&rft.jtitle=Nature%20physics&rft.au=Brown,%20Peter%20T.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=26&rft.epage=31&rft.pages=26-31&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0696-0&rft_dat=%3Cproquest_osti_%3E2342969217%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342969217&rft_id=info:pmid/&rfr_iscdi=true |