Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system

Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials 1 . ARPES directly probes fermion pairing, and hence is a natural techniqu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-01, Vol.16 (1), p.26-31
Hauptverfasser: Brown, Peter T., Guardado-Sanchez, Elmer, Spar, Benjamin M., Huang, Edwin W., Devereaux, Thomas P., Bakr, Waseem S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 26
container_title Nature physics
container_volume 16
creator Brown, Peter T.
Guardado-Sanchez, Elmer
Spar, Benjamin M.
Huang, Edwin W.
Devereaux, Thomas P.
Bakr, Waseem S.
description Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials 1 . ARPES directly probes fermion pairing, and hence is a natural technique to study the development of superconductivity in systems ranging from high-temperature superconductors to unitary Fermi gases. In these systems, a remnant gap-like feature persists in the normal state 2 . Developing a quantitative understanding of these so-called pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here, we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi–Hubbard system across the BCS–BEC crossover and comparing the results to those of quantum Monte Carlo calculations. We find evidence for a pseudogap that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model, which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments 3 . A technique analogous to angle-resolved photoemission spectroscopy used in materials characterization has been developed for interacting Fermi gases in an optical lattice, providing information on the single-particle excitations in a many-body system.
doi_str_mv 10.1038/s41567-019-0696-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1605241</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2342969217</sourcerecordid><originalsourceid>FETCH-LOGICAL-o183t-4539654caec570ce7c5c1cb995680abceea78dfe9e6c8ca9cf9cf6b5e0f1ff813</originalsourceid><addsrcrecordid>eNpFkM1Kw0AUhQdRsFYfwF3Q9ehM5ieZZSmtFQpudD0ktzdtSpuJc1OhO9_BN_RJTIkoHLhn8XE5fIzdSvEghcofSUtjMy6k48I6y8UZG8lMG57qXJ7_9UxdsiuirRA6tVKN2GzSrHfII1LYfeAqaTehC7ivierQJNQidDEQhPaYhCopkjnGff39-bU4lGURVwkdqcP9Nbuoih3hze8ds7f57HW64MuXp-fpZMmDzFXHtVHOGg0FgskEYAYGJJTOGZuLogTEIstXFTq0kEPhoOpjS4OiklWVSzVmd8PfQF3tCeoOYQOhafqZXlphUn2C7geojeH9gNT5bTjEpt_lU6VTZ10qs55KB4raWDdrjP-UFP7k1A9Ofe_Un5x6oX4Ax8lr6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342969217</pqid></control><display><type>article</type><title>Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Brown, Peter T. ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Huang, Edwin W. ; Devereaux, Thomas P. ; Bakr, Waseem S.</creator><creatorcontrib>Brown, Peter T. ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Huang, Edwin W. ; Devereaux, Thomas P. ; Bakr, Waseem S. ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials 1 . ARPES directly probes fermion pairing, and hence is a natural technique to study the development of superconductivity in systems ranging from high-temperature superconductors to unitary Fermi gases. In these systems, a remnant gap-like feature persists in the normal state 2 . Developing a quantitative understanding of these so-called pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here, we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi–Hubbard system across the BCS–BEC crossover and comparing the results to those of quantum Monte Carlo calculations. We find evidence for a pseudogap that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model, which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments 3 . A technique analogous to angle-resolved photoemission spectroscopy used in materials characterization has been developed for interacting Fermi gases in an optical lattice, providing information on the single-particle excitations in a many-body system.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0696-0</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/36/1125 ; 639/766/483/3926 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Computer simulation ; Condensed Matter Physics ; Excitation ; Fermi gases ; Fermions ; High temperature ; High temperature superconductors ; Letter ; Mathematical and Computational Physics ; Molecular ; Monte Carlo simulation ; Optical and Plasma Physics ; Optical lattices ; Photoelectric emission ; Photoelectron spectroscopy ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Quantum theory ; Spectroscopy ; Spectrum analysis ; Superconductivity ; Superfluidity ; Theoretical</subject><ispartof>Nature physics, 2020-01, Vol.16 (1), p.26-31</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-o183t-4539654caec570ce7c5c1cb995680abceea78dfe9e6c8ca9cf9cf6b5e0f1ff813</cites><orcidid>0000-0002-6250-9529 ; 0000-0002-2060-6398 ; 0000-0003-1901-8262 ; 0000000319018262 ; 0000000220606398 ; 0000000262509529</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1605241$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown, Peter T.</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Huang, Edwin W.</creatorcontrib><creatorcontrib>Devereaux, Thomas P.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials 1 . ARPES directly probes fermion pairing, and hence is a natural technique to study the development of superconductivity in systems ranging from high-temperature superconductors to unitary Fermi gases. In these systems, a remnant gap-like feature persists in the normal state 2 . Developing a quantitative understanding of these so-called pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here, we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi–Hubbard system across the BCS–BEC crossover and comparing the results to those of quantum Monte Carlo calculations. We find evidence for a pseudogap that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model, which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments 3 . A technique analogous to angle-resolved photoemission spectroscopy used in materials characterization has been developed for interacting Fermi gases in an optical lattice, providing information on the single-particle excitations in a many-body system.</description><subject>639/766/36/1125</subject><subject>639/766/483/3926</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computer simulation</subject><subject>Condensed Matter Physics</subject><subject>Excitation</subject><subject>Fermi gases</subject><subject>Fermions</subject><subject>High temperature</subject><subject>High temperature superconductors</subject><subject>Letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Monte Carlo simulation</subject><subject>Optical and Plasma Physics</subject><subject>Optical lattices</subject><subject>Photoelectric emission</subject><subject>Photoelectron spectroscopy</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Quantum theory</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkM1Kw0AUhQdRsFYfwF3Q9ehM5ieZZSmtFQpudD0ktzdtSpuJc1OhO9_BN_RJTIkoHLhn8XE5fIzdSvEghcofSUtjMy6k48I6y8UZG8lMG57qXJ7_9UxdsiuirRA6tVKN2GzSrHfII1LYfeAqaTehC7ivierQJNQidDEQhPaYhCopkjnGff39-bU4lGURVwkdqcP9Nbuoih3hze8ds7f57HW64MuXp-fpZMmDzFXHtVHOGg0FgskEYAYGJJTOGZuLogTEIstXFTq0kEPhoOpjS4OiklWVSzVmd8PfQF3tCeoOYQOhafqZXlphUn2C7geojeH9gNT5bTjEpt_lU6VTZ10qs55KB4raWDdrjP-UFP7k1A9Ofe_Un5x6oX4Ax8lr6w</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Brown, Peter T.</creator><creator>Guardado-Sanchez, Elmer</creator><creator>Spar, Benjamin M.</creator><creator>Huang, Edwin W.</creator><creator>Devereaux, Thomas P.</creator><creator>Bakr, Waseem S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Publishing Group (NPG)</general><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6250-9529</orcidid><orcidid>https://orcid.org/0000-0002-2060-6398</orcidid><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000000319018262</orcidid><orcidid>https://orcid.org/0000000220606398</orcidid><orcidid>https://orcid.org/0000000262509529</orcidid></search><sort><creationdate>20200101</creationdate><title>Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system</title><author>Brown, Peter T. ; Guardado-Sanchez, Elmer ; Spar, Benjamin M. ; Huang, Edwin W. ; Devereaux, Thomas P. ; Bakr, Waseem S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o183t-4539654caec570ce7c5c1cb995680abceea78dfe9e6c8ca9cf9cf6b5e0f1ff813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/36/1125</topic><topic>639/766/483/3926</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computer simulation</topic><topic>Condensed Matter Physics</topic><topic>Excitation</topic><topic>Fermi gases</topic><topic>Fermions</topic><topic>High temperature</topic><topic>High temperature superconductors</topic><topic>Letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Monte Carlo simulation</topic><topic>Optical and Plasma Physics</topic><topic>Optical lattices</topic><topic>Photoelectric emission</topic><topic>Photoelectron spectroscopy</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Quantum theory</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown, Peter T.</creatorcontrib><creatorcontrib>Guardado-Sanchez, Elmer</creatorcontrib><creatorcontrib>Spar, Benjamin M.</creatorcontrib><creatorcontrib>Huang, Edwin W.</creatorcontrib><creatorcontrib>Devereaux, Thomas P.</creatorcontrib><creatorcontrib>Bakr, Waseem S.</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown, Peter T.</au><au>Guardado-Sanchez, Elmer</au><au>Spar, Benjamin M.</au><au>Huang, Edwin W.</au><au>Devereaux, Thomas P.</au><au>Bakr, Waseem S.</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>26</spage><epage>31</epage><pages>26-31</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Angle-resolved photoemission spectroscopy (ARPES) measures the single-particle excitations of a many-body quantum system with energy and momentum resolution, providing detailed information about strongly interacting materials 1 . ARPES directly probes fermion pairing, and hence is a natural technique to study the development of superconductivity in systems ranging from high-temperature superconductors to unitary Fermi gases. In these systems, a remnant gap-like feature persists in the normal state 2 . Developing a quantitative understanding of these so-called pseudogap regimes may elucidate details about the pairing mechanisms that lead to superconductivity, but this is difficult in real materials partly because the microscopic Hamiltonian is not known. Here, we report on the development of ARPES to study strongly interacting fermions in an optical lattice using a quantum gas microscope. We benchmark the technique by measuring the occupied single-particle spectral function of an attractive Fermi–Hubbard system across the BCS–BEC crossover and comparing the results to those of quantum Monte Carlo calculations. We find evidence for a pseudogap that opens well above the expected critical temperature for superfluidity. This technique may also be applied to the doped repulsive Hubbard model, which is expected to exhibit a pseudogap at temperatures close to those achieved in recent experiments 3 . A technique analogous to angle-resolved photoemission spectroscopy used in materials characterization has been developed for interacting Fermi gases in an optical lattice, providing information on the single-particle excitations in a many-body system.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-019-0696-0</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6250-9529</orcidid><orcidid>https://orcid.org/0000-0002-2060-6398</orcidid><orcidid>https://orcid.org/0000-0003-1901-8262</orcidid><orcidid>https://orcid.org/0000000319018262</orcidid><orcidid>https://orcid.org/0000000220606398</orcidid><orcidid>https://orcid.org/0000000262509529</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-01, Vol.16 (1), p.26-31
issn 1745-2473
1745-2481
language eng
recordid cdi_osti_scitechconnect_1605241
source Nature; Alma/SFX Local Collection
subjects 639/766/36/1125
639/766/483/3926
Atomic
Classical and Continuum Physics
Complex Systems
Computer simulation
Condensed Matter Physics
Excitation
Fermi gases
Fermions
High temperature
High temperature superconductors
Letter
Mathematical and Computational Physics
Molecular
Monte Carlo simulation
Optical and Plasma Physics
Optical lattices
Photoelectric emission
Photoelectron spectroscopy
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Quantum theory
Spectroscopy
Spectrum analysis
Superconductivity
Superfluidity
Theoretical
title Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Angle-resolved%20photoemission%20spectroscopy%20of%20a%20Fermi%E2%80%93Hubbard%20system&rft.jtitle=Nature%20physics&rft.au=Brown,%20Peter%20T.&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=26&rft.epage=31&rft.pages=26-31&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0696-0&rft_dat=%3Cproquest_osti_%3E2342969217%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342969217&rft_id=info:pmid/&rfr_iscdi=true