Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu

•We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal grow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of crystal growth 2020-04, Vol.536 (C), p.125572, Article 125572
Hauptverfasser: Derby, Jeffrey J., Zhang, Chang, Seebeck, Jan, Peterson, Jeffrey H., Tremsin, Anton S., Perrodin, Didier, Bizarri, Gregory A., Bourret, Edith D., Losko, Adrian S., Vogel, Sven C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 125572
container_title Journal of crystal growth
container_volume 536
creator Derby, Jeffrey J.
Zhang, Chang
Seebeck, Jan
Peterson, Jeffrey H.
Tremsin, Anton S.
Perrodin, Didier
Bizarri, Gregory A.
Bourret, Edith D.
Losko, Adrian S.
Vogel, Sven C.
description •We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal growth. We apply continuum models to analyze phase change, heat transfer, fluid flow, solute transport, and segregation in order to understand prior neutron imaging observations of the vertical gradient freeze growth of Eu-doped BaBrCl. The models provide a rigorous framework in which to understand the mechanisms that are responsible for the complicated evolution of interface shape and dopant distribution in the growth experiment. We explain how a transition in the solid/liquid interface shape from concave to convex is driven by changes in radial heat transfer caused by furnace design. We also provide a mechanistic explanation of how dynamic growth conditions and changes of the flow structure in the melt result in complicated segregation patterns in this system. A growth pause caused by controller lock-up is shown to result in a band of solute depletion in accordance with classical theory. However, changing flow patterns during growth result in a non-monotonic axial distribution of solute that cannot be explained by simple application of classical segregation models. We assert that the approach presented here, namely the use of rigorous models in conjunction advanced diagnostics, such as neutron imaging, provides an exciting path forward for process optimization and control, accelerating the incremental advances that have, in the past, typically relied on empiricism, experience, and intuition.
doi_str_mv 10.1016/j.jcrysgro.2020.125572
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1605133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024820300956</els_id><sourcerecordid>2438989105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-fedab87a3915e691ed1eae7f8c9959c8d9a7d0362851f109ac6972546909bdc83</originalsourceid><addsrcrecordid>eNqFUU1v3CAQRVUrdZv0L1SoPXsLeLFNT21W6YcUKZfmjAiMvVhe2A44UfpH-neD1-25F0a8ee8xzCPkHWdbznjzcdyOFp_SgHErmCigkLIVL8iGd21dScbES7Ipp6iY2HWvyZuURsaKkrMN-bOPx9OcTfYxmIkeo4PJh4Ga4GiAOWMM1B_NsGA50jk4wJSXrg8ZsDcWaDqYE5wVKU5zLgAMCMPZk7oZz9oD0AfA7G15ZUDjPIRMewT4DeUeH_OBxp5emSvcT5-u50vyqjdTgrd_6wW5-3r9c_-9urn99mP_5aayOy5z1YMz911rasUlNIqD42Cg7TurlFS2c8q0jtWN6CTvOVPGNqoVctcopu6d7eoL8n71jSl7nazPYA82hgA2a94wyeu6kD6spBPGXzOkrMc4Y9lX0mJXd6pTnMnCalaWxZgSQq9PWFaHT5ozvSSlR_0vKb0kpdekivDzKoTy0QcPuMwBwYLzuIzhov-fxTMjjaMK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438989105</pqid></control><display><type>article</type><title>Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Derby, Jeffrey J. ; Zhang, Chang ; Seebeck, Jan ; Peterson, Jeffrey H. ; Tremsin, Anton S. ; Perrodin, Didier ; Bizarri, Gregory A. ; Bourret, Edith D. ; Losko, Adrian S. ; Vogel, Sven C.</creator><creatorcontrib>Derby, Jeffrey J. ; Zhang, Chang ; Seebeck, Jan ; Peterson, Jeffrey H. ; Tremsin, Anton S. ; Perrodin, Didier ; Bizarri, Gregory A. ; Bourret, Edith D. ; Losko, Adrian S. ; Vogel, Sven C. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>•We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal growth. We apply continuum models to analyze phase change, heat transfer, fluid flow, solute transport, and segregation in order to understand prior neutron imaging observations of the vertical gradient freeze growth of Eu-doped BaBrCl. The models provide a rigorous framework in which to understand the mechanisms that are responsible for the complicated evolution of interface shape and dopant distribution in the growth experiment. We explain how a transition in the solid/liquid interface shape from concave to convex is driven by changes in radial heat transfer caused by furnace design. We also provide a mechanistic explanation of how dynamic growth conditions and changes of the flow structure in the melt result in complicated segregation patterns in this system. A growth pause caused by controller lock-up is shown to result in a band of solute depletion in accordance with classical theory. However, changing flow patterns during growth result in a non-monotonic axial distribution of solute that cannot be explained by simple application of classical segregation models. We assert that the approach presented here, namely the use of rigorous models in conjunction advanced diagnostics, such as neutron imaging, provides an exciting path forward for process optimization and control, accelerating the incremental advances that have, in the past, typically relied on empiricism, experience, and intuition.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2020.125572</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Computer simulation ; A1. Heat transfer ; A1. Neutron imaging ; A1. Segregation ; A2. Bridgman technique ; B2. Scintillator materials ; Computational fluid dynamics ; Continuum modeling ; Depletion ; Fluid flow ; Heat transfer ; Imaging ; MATERIALS SCIENCE ; Optimization</subject><ispartof>Journal of crystal growth, 2020-04, Vol.536 (C), p.125572, Article 125572</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-fedab87a3915e691ed1eae7f8c9959c8d9a7d0362851f109ac6972546909bdc83</citedby><cites>FETCH-LOGICAL-c415t-fedab87a3915e691ed1eae7f8c9959c8d9a7d0362851f109ac6972546909bdc83</cites><orcidid>0000000320490361 ; 000000015307356X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2020.125572$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1605133$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Derby, Jeffrey J.</creatorcontrib><creatorcontrib>Zhang, Chang</creatorcontrib><creatorcontrib>Seebeck, Jan</creatorcontrib><creatorcontrib>Peterson, Jeffrey H.</creatorcontrib><creatorcontrib>Tremsin, Anton S.</creatorcontrib><creatorcontrib>Perrodin, Didier</creatorcontrib><creatorcontrib>Bizarri, Gregory A.</creatorcontrib><creatorcontrib>Bourret, Edith D.</creatorcontrib><creatorcontrib>Losko, Adrian S.</creatorcontrib><creatorcontrib>Vogel, Sven C.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu</title><title>Journal of crystal growth</title><description>•We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal growth. We apply continuum models to analyze phase change, heat transfer, fluid flow, solute transport, and segregation in order to understand prior neutron imaging observations of the vertical gradient freeze growth of Eu-doped BaBrCl. The models provide a rigorous framework in which to understand the mechanisms that are responsible for the complicated evolution of interface shape and dopant distribution in the growth experiment. We explain how a transition in the solid/liquid interface shape from concave to convex is driven by changes in radial heat transfer caused by furnace design. We also provide a mechanistic explanation of how dynamic growth conditions and changes of the flow structure in the melt result in complicated segregation patterns in this system. A growth pause caused by controller lock-up is shown to result in a band of solute depletion in accordance with classical theory. However, changing flow patterns during growth result in a non-monotonic axial distribution of solute that cannot be explained by simple application of classical segregation models. We assert that the approach presented here, namely the use of rigorous models in conjunction advanced diagnostics, such as neutron imaging, provides an exciting path forward for process optimization and control, accelerating the incremental advances that have, in the past, typically relied on empiricism, experience, and intuition.</description><subject>A1. Computer simulation</subject><subject>A1. Heat transfer</subject><subject>A1. Neutron imaging</subject><subject>A1. Segregation</subject><subject>A2. Bridgman technique</subject><subject>B2. Scintillator materials</subject><subject>Computational fluid dynamics</subject><subject>Continuum modeling</subject><subject>Depletion</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Imaging</subject><subject>MATERIALS SCIENCE</subject><subject>Optimization</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v3CAQRVUrdZv0L1SoPXsLeLFNT21W6YcUKZfmjAiMvVhe2A44UfpH-neD1-25F0a8ee8xzCPkHWdbznjzcdyOFp_SgHErmCigkLIVL8iGd21dScbES7Ipp6iY2HWvyZuURsaKkrMN-bOPx9OcTfYxmIkeo4PJh4Ga4GiAOWMM1B_NsGA50jk4wJSXrg8ZsDcWaDqYE5wVKU5zLgAMCMPZk7oZz9oD0AfA7G15ZUDjPIRMewT4DeUeH_OBxp5emSvcT5-u50vyqjdTgrd_6wW5-3r9c_-9urn99mP_5aayOy5z1YMz911rasUlNIqD42Cg7TurlFS2c8q0jtWN6CTvOVPGNqoVctcopu6d7eoL8n71jSl7nazPYA82hgA2a94wyeu6kD6spBPGXzOkrMc4Y9lX0mJXd6pTnMnCalaWxZgSQq9PWFaHT5ozvSSlR_0vKb0kpdekivDzKoTy0QcPuMwBwYLzuIzhov-fxTMjjaMK</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Derby, Jeffrey J.</creator><creator>Zhang, Chang</creator><creator>Seebeck, Jan</creator><creator>Peterson, Jeffrey H.</creator><creator>Tremsin, Anton S.</creator><creator>Perrodin, Didier</creator><creator>Bizarri, Gregory A.</creator><creator>Bourret, Edith D.</creator><creator>Losko, Adrian S.</creator><creator>Vogel, Sven C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000320490361</orcidid><orcidid>https://orcid.org/000000015307356X</orcidid></search><sort><creationdate>20200415</creationdate><title>Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu</title><author>Derby, Jeffrey J. ; Zhang, Chang ; Seebeck, Jan ; Peterson, Jeffrey H. ; Tremsin, Anton S. ; Perrodin, Didier ; Bizarri, Gregory A. ; Bourret, Edith D. ; Losko, Adrian S. ; Vogel, Sven C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-fedab87a3915e691ed1eae7f8c9959c8d9a7d0362851f109ac6972546909bdc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A1. Computer simulation</topic><topic>A1. Heat transfer</topic><topic>A1. Neutron imaging</topic><topic>A1. Segregation</topic><topic>A2. Bridgman technique</topic><topic>B2. Scintillator materials</topic><topic>Computational fluid dynamics</topic><topic>Continuum modeling</topic><topic>Depletion</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Imaging</topic><topic>MATERIALS SCIENCE</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derby, Jeffrey J.</creatorcontrib><creatorcontrib>Zhang, Chang</creatorcontrib><creatorcontrib>Seebeck, Jan</creatorcontrib><creatorcontrib>Peterson, Jeffrey H.</creatorcontrib><creatorcontrib>Tremsin, Anton S.</creatorcontrib><creatorcontrib>Perrodin, Didier</creatorcontrib><creatorcontrib>Bizarri, Gregory A.</creatorcontrib><creatorcontrib>Bourret, Edith D.</creatorcontrib><creatorcontrib>Losko, Adrian S.</creatorcontrib><creatorcontrib>Vogel, Sven C.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derby, Jeffrey J.</au><au>Zhang, Chang</au><au>Seebeck, Jan</au><au>Peterson, Jeffrey H.</au><au>Tremsin, Anton S.</au><au>Perrodin, Didier</au><au>Bizarri, Gregory A.</au><au>Bourret, Edith D.</au><au>Losko, Adrian S.</au><au>Vogel, Sven C.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu</atitle><jtitle>Journal of crystal growth</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>536</volume><issue>C</issue><spage>125572</spage><pages>125572-</pages><artnum>125572</artnum><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal growth. We apply continuum models to analyze phase change, heat transfer, fluid flow, solute transport, and segregation in order to understand prior neutron imaging observations of the vertical gradient freeze growth of Eu-doped BaBrCl. The models provide a rigorous framework in which to understand the mechanisms that are responsible for the complicated evolution of interface shape and dopant distribution in the growth experiment. We explain how a transition in the solid/liquid interface shape from concave to convex is driven by changes in radial heat transfer caused by furnace design. We also provide a mechanistic explanation of how dynamic growth conditions and changes of the flow structure in the melt result in complicated segregation patterns in this system. A growth pause caused by controller lock-up is shown to result in a band of solute depletion in accordance with classical theory. However, changing flow patterns during growth result in a non-monotonic axial distribution of solute that cannot be explained by simple application of classical segregation models. We assert that the approach presented here, namely the use of rigorous models in conjunction advanced diagnostics, such as neutron imaging, provides an exciting path forward for process optimization and control, accelerating the incremental advances that have, in the past, typically relied on empiricism, experience, and intuition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2020.125572</doi><orcidid>https://orcid.org/0000000320490361</orcidid><orcidid>https://orcid.org/000000015307356X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0248
ispartof Journal of crystal growth, 2020-04, Vol.536 (C), p.125572, Article 125572
issn 0022-0248
1873-5002
language eng
recordid cdi_osti_scitechconnect_1605133
source ScienceDirect Journals (5 years ago - present)
subjects A1. Computer simulation
A1. Heat transfer
A1. Neutron imaging
A1. Segregation
A2. Bridgman technique
B2. Scintillator materials
Computational fluid dynamics
Continuum modeling
Depletion
Fluid flow
Heat transfer
Imaging
MATERIALS SCIENCE
Optimization
title Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20and%20neutron%20imaging%20to%20understand%20interface%20shape%20and%20solute%20segregation%20during%20the%20vertical%20gradient%20freeze%20growth%20of%20BaBrCl:Eu&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Derby,%20Jeffrey%20J.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-04-15&rft.volume=536&rft.issue=C&rft.spage=125572&rft.pages=125572-&rft.artnum=125572&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2020.125572&rft_dat=%3Cproquest_osti_%3E2438989105%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438989105&rft_id=info:pmid/&rft_els_id=S0022024820300956&rfr_iscdi=true