Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu
•We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal grow...
Gespeichert in:
Veröffentlicht in: | Journal of crystal growth 2020-04, Vol.536 (C), p.125572, Article 125572 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 125572 |
container_title | Journal of crystal growth |
container_volume | 536 |
creator | Derby, Jeffrey J. Zhang, Chang Seebeck, Jan Peterson, Jeffrey H. Tremsin, Anton S. Perrodin, Didier Bizarri, Gregory A. Bourret, Edith D. Losko, Adrian S. Vogel, Sven C. |
description | •We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal growth.
We apply continuum models to analyze phase change, heat transfer, fluid flow, solute transport, and segregation in order to understand prior neutron imaging observations of the vertical gradient freeze growth of Eu-doped BaBrCl. The models provide a rigorous framework in which to understand the mechanisms that are responsible for the complicated evolution of interface shape and dopant distribution in the growth experiment. We explain how a transition in the solid/liquid interface shape from concave to convex is driven by changes in radial heat transfer caused by furnace design. We also provide a mechanistic explanation of how dynamic growth conditions and changes of the flow structure in the melt result in complicated segregation patterns in this system. A growth pause caused by controller lock-up is shown to result in a band of solute depletion in accordance with classical theory. However, changing flow patterns during growth result in a non-monotonic axial distribution of solute that cannot be explained by simple application of classical segregation models. We assert that the approach presented here, namely the use of rigorous models in conjunction advanced diagnostics, such as neutron imaging, provides an exciting path forward for process optimization and control, accelerating the incremental advances that have, in the past, typically relied on empiricism, experience, and intuition. |
doi_str_mv | 10.1016/j.jcrysgro.2020.125572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1605133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022024820300956</els_id><sourcerecordid>2438989105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-fedab87a3915e691ed1eae7f8c9959c8d9a7d0362851f109ac6972546909bdc83</originalsourceid><addsrcrecordid>eNqFUU1v3CAQRVUrdZv0L1SoPXsLeLFNT21W6YcUKZfmjAiMvVhe2A44UfpH-neD1-25F0a8ee8xzCPkHWdbznjzcdyOFp_SgHErmCigkLIVL8iGd21dScbES7Ipp6iY2HWvyZuURsaKkrMN-bOPx9OcTfYxmIkeo4PJh4Ga4GiAOWMM1B_NsGA50jk4wJSXrg8ZsDcWaDqYE5wVKU5zLgAMCMPZk7oZz9oD0AfA7G15ZUDjPIRMewT4DeUeH_OBxp5emSvcT5-u50vyqjdTgrd_6wW5-3r9c_-9urn99mP_5aayOy5z1YMz911rasUlNIqD42Cg7TurlFS2c8q0jtWN6CTvOVPGNqoVctcopu6d7eoL8n71jSl7nazPYA82hgA2a94wyeu6kD6spBPGXzOkrMc4Y9lX0mJXd6pTnMnCalaWxZgSQq9PWFaHT5ozvSSlR_0vKb0kpdekivDzKoTy0QcPuMwBwYLzuIzhov-fxTMjjaMK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438989105</pqid></control><display><type>article</type><title>Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Derby, Jeffrey J. ; Zhang, Chang ; Seebeck, Jan ; Peterson, Jeffrey H. ; Tremsin, Anton S. ; Perrodin, Didier ; Bizarri, Gregory A. ; Bourret, Edith D. ; Losko, Adrian S. ; Vogel, Sven C.</creator><creatorcontrib>Derby, Jeffrey J. ; Zhang, Chang ; Seebeck, Jan ; Peterson, Jeffrey H. ; Tremsin, Anton S. ; Perrodin, Didier ; Bizarri, Gregory A. ; Bourret, Edith D. ; Losko, Adrian S. ; Vogel, Sven C. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>•We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal growth.
We apply continuum models to analyze phase change, heat transfer, fluid flow, solute transport, and segregation in order to understand prior neutron imaging observations of the vertical gradient freeze growth of Eu-doped BaBrCl. The models provide a rigorous framework in which to understand the mechanisms that are responsible for the complicated evolution of interface shape and dopant distribution in the growth experiment. We explain how a transition in the solid/liquid interface shape from concave to convex is driven by changes in radial heat transfer caused by furnace design. We also provide a mechanistic explanation of how dynamic growth conditions and changes of the flow structure in the melt result in complicated segregation patterns in this system. A growth pause caused by controller lock-up is shown to result in a band of solute depletion in accordance with classical theory. However, changing flow patterns during growth result in a non-monotonic axial distribution of solute that cannot be explained by simple application of classical segregation models. We assert that the approach presented here, namely the use of rigorous models in conjunction advanced diagnostics, such as neutron imaging, provides an exciting path forward for process optimization and control, accelerating the incremental advances that have, in the past, typically relied on empiricism, experience, and intuition.</description><identifier>ISSN: 0022-0248</identifier><identifier>EISSN: 1873-5002</identifier><identifier>DOI: 10.1016/j.jcrysgro.2020.125572</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>A1. Computer simulation ; A1. Heat transfer ; A1. Neutron imaging ; A1. Segregation ; A2. Bridgman technique ; B2. Scintillator materials ; Computational fluid dynamics ; Continuum modeling ; Depletion ; Fluid flow ; Heat transfer ; Imaging ; MATERIALS SCIENCE ; Optimization</subject><ispartof>Journal of crystal growth, 2020-04, Vol.536 (C), p.125572, Article 125572</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-fedab87a3915e691ed1eae7f8c9959c8d9a7d0362851f109ac6972546909bdc83</citedby><cites>FETCH-LOGICAL-c415t-fedab87a3915e691ed1eae7f8c9959c8d9a7d0362851f109ac6972546909bdc83</cites><orcidid>0000000320490361 ; 000000015307356X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcrysgro.2020.125572$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1605133$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Derby, Jeffrey J.</creatorcontrib><creatorcontrib>Zhang, Chang</creatorcontrib><creatorcontrib>Seebeck, Jan</creatorcontrib><creatorcontrib>Peterson, Jeffrey H.</creatorcontrib><creatorcontrib>Tremsin, Anton S.</creatorcontrib><creatorcontrib>Perrodin, Didier</creatorcontrib><creatorcontrib>Bizarri, Gregory A.</creatorcontrib><creatorcontrib>Bourret, Edith D.</creatorcontrib><creatorcontrib>Losko, Adrian S.</creatorcontrib><creatorcontrib>Vogel, Sven C.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu</title><title>Journal of crystal growth</title><description>•We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal growth.
We apply continuum models to analyze phase change, heat transfer, fluid flow, solute transport, and segregation in order to understand prior neutron imaging observations of the vertical gradient freeze growth of Eu-doped BaBrCl. The models provide a rigorous framework in which to understand the mechanisms that are responsible for the complicated evolution of interface shape and dopant distribution in the growth experiment. We explain how a transition in the solid/liquid interface shape from concave to convex is driven by changes in radial heat transfer caused by furnace design. We also provide a mechanistic explanation of how dynamic growth conditions and changes of the flow structure in the melt result in complicated segregation patterns in this system. A growth pause caused by controller lock-up is shown to result in a band of solute depletion in accordance with classical theory. However, changing flow patterns during growth result in a non-monotonic axial distribution of solute that cannot be explained by simple application of classical segregation models. We assert that the approach presented here, namely the use of rigorous models in conjunction advanced diagnostics, such as neutron imaging, provides an exciting path forward for process optimization and control, accelerating the incremental advances that have, in the past, typically relied on empiricism, experience, and intuition.</description><subject>A1. Computer simulation</subject><subject>A1. Heat transfer</subject><subject>A1. Neutron imaging</subject><subject>A1. Segregation</subject><subject>A2. Bridgman technique</subject><subject>B2. Scintillator materials</subject><subject>Computational fluid dynamics</subject><subject>Continuum modeling</subject><subject>Depletion</subject><subject>Fluid flow</subject><subject>Heat transfer</subject><subject>Imaging</subject><subject>MATERIALS SCIENCE</subject><subject>Optimization</subject><issn>0022-0248</issn><issn>1873-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v3CAQRVUrdZv0L1SoPXsLeLFNT21W6YcUKZfmjAiMvVhe2A44UfpH-neD1-25F0a8ee8xzCPkHWdbznjzcdyOFp_SgHErmCigkLIVL8iGd21dScbES7Ipp6iY2HWvyZuURsaKkrMN-bOPx9OcTfYxmIkeo4PJh4Ga4GiAOWMM1B_NsGA50jk4wJSXrg8ZsDcWaDqYE5wVKU5zLgAMCMPZk7oZz9oD0AfA7G15ZUDjPIRMewT4DeUeH_OBxp5emSvcT5-u50vyqjdTgrd_6wW5-3r9c_-9urn99mP_5aayOy5z1YMz911rasUlNIqD42Cg7TurlFS2c8q0jtWN6CTvOVPGNqoVctcopu6d7eoL8n71jSl7nazPYA82hgA2a94wyeu6kD6spBPGXzOkrMc4Y9lX0mJXd6pTnMnCalaWxZgSQq9PWFaHT5ozvSSlR_0vKb0kpdekivDzKoTy0QcPuMwBwYLzuIzhov-fxTMjjaMK</recordid><startdate>20200415</startdate><enddate>20200415</enddate><creator>Derby, Jeffrey J.</creator><creator>Zhang, Chang</creator><creator>Seebeck, Jan</creator><creator>Peterson, Jeffrey H.</creator><creator>Tremsin, Anton S.</creator><creator>Perrodin, Didier</creator><creator>Bizarri, Gregory A.</creator><creator>Bourret, Edith D.</creator><creator>Losko, Adrian S.</creator><creator>Vogel, Sven C.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000320490361</orcidid><orcidid>https://orcid.org/000000015307356X</orcidid></search><sort><creationdate>20200415</creationdate><title>Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu</title><author>Derby, Jeffrey J. ; Zhang, Chang ; Seebeck, Jan ; Peterson, Jeffrey H. ; Tremsin, Anton S. ; Perrodin, Didier ; Bizarri, Gregory A. ; Bourret, Edith D. ; Losko, Adrian S. ; Vogel, Sven C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-fedab87a3915e691ed1eae7f8c9959c8d9a7d0362851f109ac6972546909bdc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A1. Computer simulation</topic><topic>A1. Heat transfer</topic><topic>A1. Neutron imaging</topic><topic>A1. Segregation</topic><topic>A2. Bridgman technique</topic><topic>B2. Scintillator materials</topic><topic>Computational fluid dynamics</topic><topic>Continuum modeling</topic><topic>Depletion</topic><topic>Fluid flow</topic><topic>Heat transfer</topic><topic>Imaging</topic><topic>MATERIALS SCIENCE</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Derby, Jeffrey J.</creatorcontrib><creatorcontrib>Zhang, Chang</creatorcontrib><creatorcontrib>Seebeck, Jan</creatorcontrib><creatorcontrib>Peterson, Jeffrey H.</creatorcontrib><creatorcontrib>Tremsin, Anton S.</creatorcontrib><creatorcontrib>Perrodin, Didier</creatorcontrib><creatorcontrib>Bizarri, Gregory A.</creatorcontrib><creatorcontrib>Bourret, Edith D.</creatorcontrib><creatorcontrib>Losko, Adrian S.</creatorcontrib><creatorcontrib>Vogel, Sven C.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of crystal growth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Derby, Jeffrey J.</au><au>Zhang, Chang</au><au>Seebeck, Jan</au><au>Peterson, Jeffrey H.</au><au>Tremsin, Anton S.</au><au>Perrodin, Didier</au><au>Bizarri, Gregory A.</au><au>Bourret, Edith D.</au><au>Losko, Adrian S.</au><au>Vogel, Sven C.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu</atitle><jtitle>Journal of crystal growth</jtitle><date>2020-04-15</date><risdate>2020</risdate><volume>536</volume><issue>C</issue><spage>125572</spage><pages>125572-</pages><artnum>125572</artnum><issn>0022-0248</issn><eissn>1873-5002</eissn><abstract>•We employ computational models and neutron imaging to understand VGF growth.•Changes in the shape of the solid/liquid interface are explained.•Complicated segregation behavior is observed and understood via model results.•Neutron imaging and modeling reveal what has been hidden in melt crystal growth.
We apply continuum models to analyze phase change, heat transfer, fluid flow, solute transport, and segregation in order to understand prior neutron imaging observations of the vertical gradient freeze growth of Eu-doped BaBrCl. The models provide a rigorous framework in which to understand the mechanisms that are responsible for the complicated evolution of interface shape and dopant distribution in the growth experiment. We explain how a transition in the solid/liquid interface shape from concave to convex is driven by changes in radial heat transfer caused by furnace design. We also provide a mechanistic explanation of how dynamic growth conditions and changes of the flow structure in the melt result in complicated segregation patterns in this system. A growth pause caused by controller lock-up is shown to result in a band of solute depletion in accordance with classical theory. However, changing flow patterns during growth result in a non-monotonic axial distribution of solute that cannot be explained by simple application of classical segregation models. We assert that the approach presented here, namely the use of rigorous models in conjunction advanced diagnostics, such as neutron imaging, provides an exciting path forward for process optimization and control, accelerating the incremental advances that have, in the past, typically relied on empiricism, experience, and intuition.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jcrysgro.2020.125572</doi><orcidid>https://orcid.org/0000000320490361</orcidid><orcidid>https://orcid.org/000000015307356X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0248 |
ispartof | Journal of crystal growth, 2020-04, Vol.536 (C), p.125572, Article 125572 |
issn | 0022-0248 1873-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1605133 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A1. Computer simulation A1. Heat transfer A1. Neutron imaging A1. Segregation A2. Bridgman technique B2. Scintillator materials Computational fluid dynamics Continuum modeling Depletion Fluid flow Heat transfer Imaging MATERIALS SCIENCE Optimization |
title | Computational modeling and neutron imaging to understand interface shape and solute segregation during the vertical gradient freeze growth of BaBrCl:Eu |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20and%20neutron%20imaging%20to%20understand%20interface%20shape%20and%20solute%20segregation%20during%20the%20vertical%20gradient%20freeze%20growth%20of%20BaBrCl:Eu&rft.jtitle=Journal%20of%20crystal%20growth&rft.au=Derby,%20Jeffrey%20J.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2020-04-15&rft.volume=536&rft.issue=C&rft.spage=125572&rft.pages=125572-&rft.artnum=125572&rft.issn=0022-0248&rft.eissn=1873-5002&rft_id=info:doi/10.1016/j.jcrysgro.2020.125572&rft_dat=%3Cproquest_osti_%3E2438989105%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438989105&rft_id=info:pmid/&rft_els_id=S0022024820300956&rfr_iscdi=true |