Identifying TeV Source Candidates among Fermi-LAT Unclassified Blazars
Blazars, in particular the subclass of high synchrotron peaked active galactic nuclei are among the main targets for the present generation of Imaging Atmospheric Cerenkov Telescopes (IACTs), and they will remain of great importance for very high-energy γ-ray science in the era of the Cerenkov Teles...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-12, Vol.887 (1), p.104 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 104 |
container_title | The Astrophysical journal |
container_volume | 887 |
creator | Chiaro, G. Meyer, M. Mauro, M. Di Salvetti, D. Mura, G. La Thompson, D. J. |
description | Blazars, in particular the subclass of high synchrotron peaked active galactic nuclei are among the main targets for the present generation of Imaging Atmospheric Cerenkov Telescopes (IACTs), and they will remain of great importance for very high-energy γ-ray science in the era of the Cerenkov Telescope Array (CTA). Observations by IACTs, which have relatively small fields of view (∼few degrees), are limited by viewing conditions; therefore, it is important to select the most promising targets to increase the number of detections. The aim of this paper is to search for unclassified blazars among known γ-ray sources from the Fermi Large Area Telescope (LAT) third source catalog that are likely detectable with IACTs or CTA. We use an artificial neural network algorithm and updated analysis of Fermi-LAT data. We found 80 γ-ray source candidates, and for the highest-confidence candidates, we calculate their potential detectability with IACTs and CTA based on an extrapolation of their energy spectra. Follow-up observations of our source candidates could significantly increase the current TeV source population sample and ultimately confirm the efficiency of our algorithm to select TeV sources. |
doi_str_mv | 10.3847/1538-4357/ab46ad |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_1604569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2357569542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-a25b5027ce6b579eb59ef3c87c97045f94e69d1ba2d5ce3d27c028865d9f03393</originalsourceid><addsrcrecordid>eNp1kEFPwyAYhonRxDm9e2w03qyjBUo56uJ0yRIPbsYbofChLFtboTvMXy9NjV70RD6-530DD0LnGb4hJeWTjJEypYTxiapoocwBGv1cHaIRxpimBeGvx-gkhHU_5kKM0GxuoO6c3bv6LVnCS_Lc7LyGZKpq44zqICRq28TdDPzWpYvbZbKq9UaF4KwDk9xt1Kfy4RQdWbUJcPZ9jtFqdr-cPqaLp4f59HaRaop5l6qcVQznXENRMS6gYgIs0SXXgmPKrKBQCJNVKjdMAzGRxHlZFswIiwkRZIwuht4mdE4G7TrQ77qpa9CdzIrYUfTQ5QC1vvnYQejkOn6qju-SebQREUbzSOGB0r4JwYOVrXdb5fcyw7JXKnt_svcnB6UxcjVEXNP-dqp2Lcsy4jFIZWts5K7_4P6t_QLnHYMU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2357569542</pqid></control><display><type>article</type><title>Identifying TeV Source Candidates among Fermi-LAT Unclassified Blazars</title><source>IOP Publishing Free Content</source><creator>Chiaro, G. ; Meyer, M. ; Mauro, M. Di ; Salvetti, D. ; Mura, G. La ; Thompson, D. J.</creator><creatorcontrib>Chiaro, G. ; Meyer, M. ; Mauro, M. Di ; Salvetti, D. ; Mura, G. La ; Thompson, D. J. ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Blazars, in particular the subclass of high synchrotron peaked active galactic nuclei are among the main targets for the present generation of Imaging Atmospheric Cerenkov Telescopes (IACTs), and they will remain of great importance for very high-energy γ-ray science in the era of the Cerenkov Telescope Array (CTA). Observations by IACTs, which have relatively small fields of view (∼few degrees), are limited by viewing conditions; therefore, it is important to select the most promising targets to increase the number of detections. The aim of this paper is to search for unclassified blazars among known γ-ray sources from the Fermi Large Area Telescope (LAT) third source catalog that are likely detectable with IACTs or CTA. We use an artificial neural network algorithm and updated analysis of Fermi-LAT data. We found 80 γ-ray source candidates, and for the highest-confidence candidates, we calculate their potential detectability with IACTs and CTA based on an extrapolation of their energy spectra. Follow-up observations of our source candidates could significantly increase the current TeV source population sample and ultimately confirm the efficiency of our algorithm to select TeV sources.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ab46ad</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Active galactic nuclei ; Algorithms ; Artificial neural networks ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Blazars ; Energy spectra ; Gamma ray sources ; Neural networks ; Telescopes</subject><ispartof>The Astrophysical journal, 2019-12, Vol.887 (1), p.104</ispartof><rights>2019. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Dec 10, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-a25b5027ce6b579eb59ef3c87c97045f94e69d1ba2d5ce3d27c028865d9f03393</citedby><cites>FETCH-LOGICAL-c407t-a25b5027ce6b579eb59ef3c87c97045f94e69d1ba2d5ce3d27c028865d9f03393</cites><orcidid>0000-0002-0738-7581 ; 0000-0001-5217-9135 ; 0000000207387581 ; 0000000152179135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab46ad/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ab46ad$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1604569$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chiaro, G.</creatorcontrib><creatorcontrib>Meyer, M.</creatorcontrib><creatorcontrib>Mauro, M. Di</creatorcontrib><creatorcontrib>Salvetti, D.</creatorcontrib><creatorcontrib>Mura, G. La</creatorcontrib><creatorcontrib>Thompson, D. J.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>Identifying TeV Source Candidates among Fermi-LAT Unclassified Blazars</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Blazars, in particular the subclass of high synchrotron peaked active galactic nuclei are among the main targets for the present generation of Imaging Atmospheric Cerenkov Telescopes (IACTs), and they will remain of great importance for very high-energy γ-ray science in the era of the Cerenkov Telescope Array (CTA). Observations by IACTs, which have relatively small fields of view (∼few degrees), are limited by viewing conditions; therefore, it is important to select the most promising targets to increase the number of detections. The aim of this paper is to search for unclassified blazars among known γ-ray sources from the Fermi Large Area Telescope (LAT) third source catalog that are likely detectable with IACTs or CTA. We use an artificial neural network algorithm and updated analysis of Fermi-LAT data. We found 80 γ-ray source candidates, and for the highest-confidence candidates, we calculate their potential detectability with IACTs and CTA based on an extrapolation of their energy spectra. Follow-up observations of our source candidates could significantly increase the current TeV source population sample and ultimately confirm the efficiency of our algorithm to select TeV sources.</description><subject>Active galactic nuclei</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Blazars</subject><subject>Energy spectra</subject><subject>Gamma ray sources</subject><subject>Neural networks</subject><subject>Telescopes</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFPwyAYhonRxDm9e2w03qyjBUo56uJ0yRIPbsYbofChLFtboTvMXy9NjV70RD6-530DD0LnGb4hJeWTjJEypYTxiapoocwBGv1cHaIRxpimBeGvx-gkhHU_5kKM0GxuoO6c3bv6LVnCS_Lc7LyGZKpq44zqICRq28TdDPzWpYvbZbKq9UaF4KwDk9xt1Kfy4RQdWbUJcPZ9jtFqdr-cPqaLp4f59HaRaop5l6qcVQznXENRMS6gYgIs0SXXgmPKrKBQCJNVKjdMAzGRxHlZFswIiwkRZIwuht4mdE4G7TrQ77qpa9CdzIrYUfTQ5QC1vvnYQejkOn6qju-SebQREUbzSOGB0r4JwYOVrXdb5fcyw7JXKnt_svcnB6UxcjVEXNP-dqp2Lcsy4jFIZWts5K7_4P6t_QLnHYMU</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Chiaro, G.</creator><creator>Meyer, M.</creator><creator>Mauro, M. Di</creator><creator>Salvetti, D.</creator><creator>Mura, G. La</creator><creator>Thompson, D. J.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0738-7581</orcidid><orcidid>https://orcid.org/0000-0001-5217-9135</orcidid><orcidid>https://orcid.org/0000000207387581</orcidid><orcidid>https://orcid.org/0000000152179135</orcidid></search><sort><creationdate>20191210</creationdate><title>Identifying TeV Source Candidates among Fermi-LAT Unclassified Blazars</title><author>Chiaro, G. ; Meyer, M. ; Mauro, M. Di ; Salvetti, D. ; Mura, G. La ; Thompson, D. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-a25b5027ce6b579eb59ef3c87c97045f94e69d1ba2d5ce3d27c028865d9f03393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Active galactic nuclei</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Blazars</topic><topic>Energy spectra</topic><topic>Gamma ray sources</topic><topic>Neural networks</topic><topic>Telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiaro, G.</creatorcontrib><creatorcontrib>Meyer, M.</creatorcontrib><creatorcontrib>Mauro, M. Di</creatorcontrib><creatorcontrib>Salvetti, D.</creatorcontrib><creatorcontrib>Mura, G. La</creatorcontrib><creatorcontrib>Thompson, D. J.</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiaro, G.</au><au>Meyer, M.</au><au>Mauro, M. Di</au><au>Salvetti, D.</au><au>Mura, G. La</au><au>Thompson, D. J.</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying TeV Source Candidates among Fermi-LAT Unclassified Blazars</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>887</volume><issue>1</issue><spage>104</spage><pages>104-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>Blazars, in particular the subclass of high synchrotron peaked active galactic nuclei are among the main targets for the present generation of Imaging Atmospheric Cerenkov Telescopes (IACTs), and they will remain of great importance for very high-energy γ-ray science in the era of the Cerenkov Telescope Array (CTA). Observations by IACTs, which have relatively small fields of view (∼few degrees), are limited by viewing conditions; therefore, it is important to select the most promising targets to increase the number of detections. The aim of this paper is to search for unclassified blazars among known γ-ray sources from the Fermi Large Area Telescope (LAT) third source catalog that are likely detectable with IACTs or CTA. We use an artificial neural network algorithm and updated analysis of Fermi-LAT data. We found 80 γ-ray source candidates, and for the highest-confidence candidates, we calculate their potential detectability with IACTs and CTA based on an extrapolation of their energy spectra. Follow-up observations of our source candidates could significantly increase the current TeV source population sample and ultimately confirm the efficiency of our algorithm to select TeV sources.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ab46ad</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0738-7581</orcidid><orcidid>https://orcid.org/0000-0001-5217-9135</orcidid><orcidid>https://orcid.org/0000000207387581</orcidid><orcidid>https://orcid.org/0000000152179135</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2019-12, Vol.887 (1), p.104 |
issn | 0004-637X 1538-4357 1538-4357 |
language | eng |
recordid | cdi_osti_scitechconnect_1604569 |
source | IOP Publishing Free Content |
subjects | Active galactic nuclei Algorithms Artificial neural networks ASTRONOMY AND ASTROPHYSICS Astrophysics Blazars Energy spectra Gamma ray sources Neural networks Telescopes |
title | Identifying TeV Source Candidates among Fermi-LAT Unclassified Blazars |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T15%3A20%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20TeV%20Source%20Candidates%20among%20Fermi-LAT%20Unclassified%20Blazars&rft.jtitle=The%20Astrophysical%20journal&rft.au=Chiaro,%20G.&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-12-10&rft.volume=887&rft.issue=1&rft.spage=104&rft.pages=104-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ab46ad&rft_dat=%3Cproquest_O3W%3E2357569542%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2357569542&rft_id=info:pmid/&rfr_iscdi=true |