Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER
On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energ...
Gespeichert in:
Veröffentlicht in: | Nuclear fusion 2020-04, Vol.60 (4), p.46025 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 46025 |
container_title | Nuclear fusion |
container_volume | 60 |
creator | McClenaghan, J. Garofalo, A.M. Lao, L.L. Weisberg, D.B. Meneghini, O. Smith, S.P. Lyons, B.C. Staebler, G.M. Ding, S.Y. Huang, J. Gong, X. Qian, J. Ren, Q. Holcomb, C.T. |
description | On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energy confinement times. These conditions are projected to meet the ITER steady-state goal of Q = 5. The ITB is maintained at lower βp with a strong reverse shear, consistent with predictions that negative central shear can lower the βp threshold for the ITB. There are two observed confinement states in the high βpscenario: H-mode confinement state with a high edge pedestal, and an enhanced confinement state with a low pedestal and an ITB. It has been observed in a scan of external resonant magnetic perturbation amplitude that when there are no large type-I ELMs, there is no transition to enhanced confinement. This is consistent with the proposed mechanism for ITB formation being a type-I ELM. Quasilinear gyro-Landau fluid predictive modeling of ITER suggests that only a modest reverse shear is required to achieve the ITB formation necessary for Q=5 when electromagnetic physics including the kinetic ballooning mode (KBM) is incorporated. |
doi_str_mv | 10.1088/1741-4326/ab74a0 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1604324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1741_4326_ab74a0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1570-6ede80af9f096531788f9fe299632d20b3aa33637e8f03b3dc440c34578c35df3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7l0G6HXszN_NaSqlaKAhSNyKETHJjR9pJSYJQxP_u1Iqr8-BwFh9j1wJuBdT1VFRSZBLzcqrbSmo4YaP_6pSNAPImKwpRnLOLGD8AhBSII_a6CrqPOx8S14mvu_c1n3y9tZS02n1PuO4tt_RJG7_bUp-4d9wMXWd1Ih4Tabsf5DcY6nXofOTOB75YzZ8v2ZnTm0hXfzpmL_fz1ewxWz49LGZ3y8yIooKsJEs1aNc4aMoCRVXXg6e8aUrMbQ4tao1YYkW1A2zRGinBoCyq2mBhHY7ZzfHXx9SpaLpEZm1835NJSpQwEJDDCI4jE3yMgZzahW6rw14JUAeA6kBLHWipI0D8ATQmYyU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>McClenaghan, J. ; Garofalo, A.M. ; Lao, L.L. ; Weisberg, D.B. ; Meneghini, O. ; Smith, S.P. ; Lyons, B.C. ; Staebler, G.M. ; Ding, S.Y. ; Huang, J. ; Gong, X. ; Qian, J. ; Ren, Q. ; Holcomb, C.T.</creator><creatorcontrib>McClenaghan, J. ; Garofalo, A.M. ; Lao, L.L. ; Weisberg, D.B. ; Meneghini, O. ; Smith, S.P. ; Lyons, B.C. ; Staebler, G.M. ; Ding, S.Y. ; Huang, J. ; Gong, X. ; Qian, J. ; Ren, Q. ; Holcomb, C.T. ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energy confinement times. These conditions are projected to meet the ITER steady-state goal of Q = 5. The ITB is maintained at lower βp with a strong reverse shear, consistent with predictions that negative central shear can lower the βp threshold for the ITB. There are two observed confinement states in the high βpscenario: H-mode confinement state with a high edge pedestal, and an enhanced confinement state with a low pedestal and an ITB. It has been observed in a scan of external resonant magnetic perturbation amplitude that when there are no large type-I ELMs, there is no transition to enhanced confinement. This is consistent with the proposed mechanism for ITB formation being a type-I ELM. Quasilinear gyro-Landau fluid predictive modeling of ITER suggests that only a modest reverse shear is required to achieve the ITB formation necessary for Q=5 when electromagnetic physics including the kinetic ballooning mode (KBM) is incorporated.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ab74a0</identifier><language>eng</language><publisher>United States: IOP Science</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ITER, high β_p, ITB, transport</subject><ispartof>Nuclear fusion, 2020-04, Vol.60 (4), p.46025</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1570-6ede80af9f096531788f9fe299632d20b3aa33637e8f03b3dc440c34578c35df3</citedby><cites>FETCH-LOGICAL-c1570-6ede80af9f096531788f9fe299632d20b3aa33637e8f03b3dc440c34578c35df3</cites><orcidid>0000-0003-3232-1581 ; 0000-0002-1930-0439 ; 0000-0002-1944-1733 ; 0000-0001-5662-809X ; 0000-0003-4510-0884 ; 0000-0002-8244-2448 ; 000000015662809X ; 0000000219300439 ; 0000000332321581 ; 0000000345100884 ; 0000000219441733 ; 0000000282442448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1604324$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>Garofalo, A.M.</creatorcontrib><creatorcontrib>Lao, L.L.</creatorcontrib><creatorcontrib>Weisberg, D.B.</creatorcontrib><creatorcontrib>Meneghini, O.</creatorcontrib><creatorcontrib>Smith, S.P.</creatorcontrib><creatorcontrib>Lyons, B.C.</creatorcontrib><creatorcontrib>Staebler, G.M.</creatorcontrib><creatorcontrib>Ding, S.Y.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Gong, X.</creatorcontrib><creatorcontrib>Qian, J.</creatorcontrib><creatorcontrib>Ren, Q.</creatorcontrib><creatorcontrib>Holcomb, C.T.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER</title><title>Nuclear fusion</title><description>On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energy confinement times. These conditions are projected to meet the ITER steady-state goal of Q = 5. The ITB is maintained at lower βp with a strong reverse shear, consistent with predictions that negative central shear can lower the βp threshold for the ITB. There are two observed confinement states in the high βpscenario: H-mode confinement state with a high edge pedestal, and an enhanced confinement state with a low pedestal and an ITB. It has been observed in a scan of external resonant magnetic perturbation amplitude that when there are no large type-I ELMs, there is no transition to enhanced confinement. This is consistent with the proposed mechanism for ITB formation being a type-I ELM. Quasilinear gyro-Landau fluid predictive modeling of ITER suggests that only a modest reverse shear is required to achieve the ITB formation necessary for Q=5 when electromagnetic physics including the kinetic ballooning mode (KBM) is incorporated.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ITER, high β_p, ITB, transport</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7l0G6HXszN_NaSqlaKAhSNyKETHJjR9pJSYJQxP_u1Iqr8-BwFh9j1wJuBdT1VFRSZBLzcqrbSmo4YaP_6pSNAPImKwpRnLOLGD8AhBSII_a6CrqPOx8S14mvu_c1n3y9tZS02n1PuO4tt_RJG7_bUp-4d9wMXWd1Ih4Tabsf5DcY6nXofOTOB75YzZ8v2ZnTm0hXfzpmL_fz1ewxWz49LGZ3y8yIooKsJEs1aNc4aMoCRVXXg6e8aUrMbQ4tao1YYkW1A2zRGinBoCyq2mBhHY7ZzfHXx9SpaLpEZm1835NJSpQwEJDDCI4jE3yMgZzahW6rw14JUAeA6kBLHWipI0D8ATQmYyU</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>McClenaghan, J.</creator><creator>Garofalo, A.M.</creator><creator>Lao, L.L.</creator><creator>Weisberg, D.B.</creator><creator>Meneghini, O.</creator><creator>Smith, S.P.</creator><creator>Lyons, B.C.</creator><creator>Staebler, G.M.</creator><creator>Ding, S.Y.</creator><creator>Huang, J.</creator><creator>Gong, X.</creator><creator>Qian, J.</creator><creator>Ren, Q.</creator><creator>Holcomb, C.T.</creator><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0002-1930-0439</orcidid><orcidid>https://orcid.org/0000-0002-1944-1733</orcidid><orcidid>https://orcid.org/0000-0001-5662-809X</orcidid><orcidid>https://orcid.org/0000-0003-4510-0884</orcidid><orcidid>https://orcid.org/0000-0002-8244-2448</orcidid><orcidid>https://orcid.org/000000015662809X</orcidid><orcidid>https://orcid.org/0000000219300439</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000345100884</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/0000000282442448</orcidid></search><sort><creationdate>20200401</creationdate><title>Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER</title><author>McClenaghan, J. ; Garofalo, A.M. ; Lao, L.L. ; Weisberg, D.B. ; Meneghini, O. ; Smith, S.P. ; Lyons, B.C. ; Staebler, G.M. ; Ding, S.Y. ; Huang, J. ; Gong, X. ; Qian, J. ; Ren, Q. ; Holcomb, C.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1570-6ede80af9f096531788f9fe299632d20b3aa33637e8f03b3dc440c34578c35df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ITER, high β_p, ITB, transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>Garofalo, A.M.</creatorcontrib><creatorcontrib>Lao, L.L.</creatorcontrib><creatorcontrib>Weisberg, D.B.</creatorcontrib><creatorcontrib>Meneghini, O.</creatorcontrib><creatorcontrib>Smith, S.P.</creatorcontrib><creatorcontrib>Lyons, B.C.</creatorcontrib><creatorcontrib>Staebler, G.M.</creatorcontrib><creatorcontrib>Ding, S.Y.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Gong, X.</creatorcontrib><creatorcontrib>Qian, J.</creatorcontrib><creatorcontrib>Ren, Q.</creatorcontrib><creatorcontrib>Holcomb, C.T.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McClenaghan, J.</au><au>Garofalo, A.M.</au><au>Lao, L.L.</au><au>Weisberg, D.B.</au><au>Meneghini, O.</au><au>Smith, S.P.</au><au>Lyons, B.C.</au><au>Staebler, G.M.</au><au>Ding, S.Y.</au><au>Huang, J.</au><au>Gong, X.</au><au>Qian, J.</au><au>Ren, Q.</au><au>Holcomb, C.T.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER</atitle><jtitle>Nuclear fusion</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>60</volume><issue>4</issue><spage>46025</spage><pages>46025-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><abstract>On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energy confinement times. These conditions are projected to meet the ITER steady-state goal of Q = 5. The ITB is maintained at lower βp with a strong reverse shear, consistent with predictions that negative central shear can lower the βp threshold for the ITB. There are two observed confinement states in the high βpscenario: H-mode confinement state with a high edge pedestal, and an enhanced confinement state with a low pedestal and an ITB. It has been observed in a scan of external resonant magnetic perturbation amplitude that when there are no large type-I ELMs, there is no transition to enhanced confinement. This is consistent with the proposed mechanism for ITB formation being a type-I ELM. Quasilinear gyro-Landau fluid predictive modeling of ITER suggests that only a modest reverse shear is required to achieve the ITB formation necessary for Q=5 when electromagnetic physics including the kinetic ballooning mode (KBM) is incorporated.</abstract><cop>United States</cop><pub>IOP Science</pub><doi>10.1088/1741-4326/ab74a0</doi><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0002-1930-0439</orcidid><orcidid>https://orcid.org/0000-0002-1944-1733</orcidid><orcidid>https://orcid.org/0000-0001-5662-809X</orcidid><orcidid>https://orcid.org/0000-0003-4510-0884</orcidid><orcidid>https://orcid.org/0000-0002-8244-2448</orcidid><orcidid>https://orcid.org/000000015662809X</orcidid><orcidid>https://orcid.org/0000000219300439</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000345100884</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/0000000282442448</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5515 |
ispartof | Nuclear fusion, 2020-04, Vol.60 (4), p.46025 |
issn | 0029-5515 1741-4326 |
language | eng |
recordid | cdi_osti_scitechconnect_1604324 |
source | IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY ITER, high β_p, ITB, transport |
title | Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20at%20high%20$%7B%5Cbeta_p%7D$%20and%20development%20of%20candidate%20steady%20state%20scenarios%20for%20ITER&rft.jtitle=Nuclear%20fusion&rft.au=McClenaghan,%20J.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2020-04-01&rft.volume=60&rft.issue=4&rft.spage=46025&rft.pages=46025-&rft.issn=0029-5515&rft.eissn=1741-4326&rft_id=info:doi/10.1088/1741-4326/ab74a0&rft_dat=%3Ccrossref_osti_%3E10_1088_1741_4326_ab74a0%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |