Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER

On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2020-04, Vol.60 (4), p.46025
Hauptverfasser: McClenaghan, J., Garofalo, A.M., Lao, L.L., Weisberg, D.B., Meneghini, O., Smith, S.P., Lyons, B.C., Staebler, G.M., Ding, S.Y., Huang, J., Gong, X., Qian, J., Ren, Q., Holcomb, C.T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 46025
container_title Nuclear fusion
container_volume 60
creator McClenaghan, J.
Garofalo, A.M.
Lao, L.L.
Weisberg, D.B.
Meneghini, O.
Smith, S.P.
Lyons, B.C.
Staebler, G.M.
Ding, S.Y.
Huang, J.
Gong, X.
Qian, J.
Ren, Q.
Holcomb, C.T.
description On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energy confinement times. These conditions are projected to meet the ITER steady-state goal of Q = 5. The ITB is maintained at lower βp with a strong reverse shear, consistent with predictions that negative central shear can lower the βp threshold for the ITB. There are two observed confinement states in the high βpscenario: H-mode confinement state with a high edge pedestal, and an enhanced confinement state with a low pedestal and an ITB. It has been observed in a scan of external resonant magnetic perturbation amplitude that when there are no large type-I ELMs, there is no transition to enhanced confinement. This is consistent with the proposed mechanism for ITB formation being a type-I ELM. Quasilinear gyro-Landau fluid predictive modeling of ITER suggests that only a modest reverse shear is required to achieve the ITB formation necessary for Q=5 when electromagnetic physics including the kinetic ballooning mode (KBM) is incorporated.
doi_str_mv 10.1088/1741-4326/ab74a0
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1604324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1088_1741_4326_ab74a0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1570-6ede80af9f096531788f9fe299632d20b3aa33637e8f03b3dc440c34578c35df3</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKt7l0G6HXszN_NaSqlaKAhSNyKETHJjR9pJSYJQxP_u1Iqr8-BwFh9j1wJuBdT1VFRSZBLzcqrbSmo4YaP_6pSNAPImKwpRnLOLGD8AhBSII_a6CrqPOx8S14mvu_c1n3y9tZS02n1PuO4tt_RJG7_bUp-4d9wMXWd1Ih4Tabsf5DcY6nXofOTOB75YzZ8v2ZnTm0hXfzpmL_fz1ewxWz49LGZ3y8yIooKsJEs1aNc4aMoCRVXXg6e8aUrMbQ4tao1YYkW1A2zRGinBoCyq2mBhHY7ZzfHXx9SpaLpEZm1835NJSpQwEJDDCI4jE3yMgZzahW6rw14JUAeA6kBLHWipI0D8ATQmYyU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>McClenaghan, J. ; Garofalo, A.M. ; Lao, L.L. ; Weisberg, D.B. ; Meneghini, O. ; Smith, S.P. ; Lyons, B.C. ; Staebler, G.M. ; Ding, S.Y. ; Huang, J. ; Gong, X. ; Qian, J. ; Ren, Q. ; Holcomb, C.T.</creator><creatorcontrib>McClenaghan, J. ; Garofalo, A.M. ; Lao, L.L. ; Weisberg, D.B. ; Meneghini, O. ; Smith, S.P. ; Lyons, B.C. ; Staebler, G.M. ; Ding, S.Y. ; Huang, J. ; Gong, X. ; Qian, J. ; Ren, Q. ; Holcomb, C.T. ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energy confinement times. These conditions are projected to meet the ITER steady-state goal of Q = 5. The ITB is maintained at lower βp with a strong reverse shear, consistent with predictions that negative central shear can lower the βp threshold for the ITB. There are two observed confinement states in the high βpscenario: H-mode confinement state with a high edge pedestal, and an enhanced confinement state with a low pedestal and an ITB. It has been observed in a scan of external resonant magnetic perturbation amplitude that when there are no large type-I ELMs, there is no transition to enhanced confinement. This is consistent with the proposed mechanism for ITB formation being a type-I ELM. Quasilinear gyro-Landau fluid predictive modeling of ITER suggests that only a modest reverse shear is required to achieve the ITB formation necessary for Q=5 when electromagnetic physics including the kinetic ballooning mode (KBM) is incorporated.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/1741-4326/ab74a0</identifier><language>eng</language><publisher>United States: IOP Science</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ITER, high β_p, ITB, transport</subject><ispartof>Nuclear fusion, 2020-04, Vol.60 (4), p.46025</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1570-6ede80af9f096531788f9fe299632d20b3aa33637e8f03b3dc440c34578c35df3</citedby><cites>FETCH-LOGICAL-c1570-6ede80af9f096531788f9fe299632d20b3aa33637e8f03b3dc440c34578c35df3</cites><orcidid>0000-0003-3232-1581 ; 0000-0002-1930-0439 ; 0000-0002-1944-1733 ; 0000-0001-5662-809X ; 0000-0003-4510-0884 ; 0000-0002-8244-2448 ; 000000015662809X ; 0000000219300439 ; 0000000332321581 ; 0000000345100884 ; 0000000219441733 ; 0000000282442448</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1604324$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>Garofalo, A.M.</creatorcontrib><creatorcontrib>Lao, L.L.</creatorcontrib><creatorcontrib>Weisberg, D.B.</creatorcontrib><creatorcontrib>Meneghini, O.</creatorcontrib><creatorcontrib>Smith, S.P.</creatorcontrib><creatorcontrib>Lyons, B.C.</creatorcontrib><creatorcontrib>Staebler, G.M.</creatorcontrib><creatorcontrib>Ding, S.Y.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Gong, X.</creatorcontrib><creatorcontrib>Qian, J.</creatorcontrib><creatorcontrib>Ren, Q.</creatorcontrib><creatorcontrib>Holcomb, C.T.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER</title><title>Nuclear fusion</title><description>On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energy confinement times. These conditions are projected to meet the ITER steady-state goal of Q = 5. The ITB is maintained at lower βp with a strong reverse shear, consistent with predictions that negative central shear can lower the βp threshold for the ITB. There are two observed confinement states in the high βpscenario: H-mode confinement state with a high edge pedestal, and an enhanced confinement state with a low pedestal and an ITB. It has been observed in a scan of external resonant magnetic perturbation amplitude that when there are no large type-I ELMs, there is no transition to enhanced confinement. This is consistent with the proposed mechanism for ITB formation being a type-I ELM. Quasilinear gyro-Landau fluid predictive modeling of ITER suggests that only a modest reverse shear is required to achieve the ITB formation necessary for Q=5 when electromagnetic physics including the kinetic ballooning mode (KBM) is incorporated.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ITER, high β_p, ITB, transport</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKt7l0G6HXszN_NaSqlaKAhSNyKETHJjR9pJSYJQxP_u1Iqr8-BwFh9j1wJuBdT1VFRSZBLzcqrbSmo4YaP_6pSNAPImKwpRnLOLGD8AhBSII_a6CrqPOx8S14mvu_c1n3y9tZS02n1PuO4tt_RJG7_bUp-4d9wMXWd1Ih4Tabsf5DcY6nXofOTOB75YzZ8v2ZnTm0hXfzpmL_fz1ewxWz49LGZ3y8yIooKsJEs1aNc4aMoCRVXXg6e8aUrMbQ4tao1YYkW1A2zRGinBoCyq2mBhHY7ZzfHXx9SpaLpEZm1835NJSpQwEJDDCI4jE3yMgZzahW6rw14JUAeA6kBLHWipI0D8ATQmYyU</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>McClenaghan, J.</creator><creator>Garofalo, A.M.</creator><creator>Lao, L.L.</creator><creator>Weisberg, D.B.</creator><creator>Meneghini, O.</creator><creator>Smith, S.P.</creator><creator>Lyons, B.C.</creator><creator>Staebler, G.M.</creator><creator>Ding, S.Y.</creator><creator>Huang, J.</creator><creator>Gong, X.</creator><creator>Qian, J.</creator><creator>Ren, Q.</creator><creator>Holcomb, C.T.</creator><general>IOP Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0002-1930-0439</orcidid><orcidid>https://orcid.org/0000-0002-1944-1733</orcidid><orcidid>https://orcid.org/0000-0001-5662-809X</orcidid><orcidid>https://orcid.org/0000-0003-4510-0884</orcidid><orcidid>https://orcid.org/0000-0002-8244-2448</orcidid><orcidid>https://orcid.org/000000015662809X</orcidid><orcidid>https://orcid.org/0000000219300439</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000345100884</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/0000000282442448</orcidid></search><sort><creationdate>20200401</creationdate><title>Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER</title><author>McClenaghan, J. ; Garofalo, A.M. ; Lao, L.L. ; Weisberg, D.B. ; Meneghini, O. ; Smith, S.P. ; Lyons, B.C. ; Staebler, G.M. ; Ding, S.Y. ; Huang, J. ; Gong, X. ; Qian, J. ; Ren, Q. ; Holcomb, C.T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1570-6ede80af9f096531788f9fe299632d20b3aa33637e8f03b3dc440c34578c35df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ITER, high β_p, ITB, transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McClenaghan, J.</creatorcontrib><creatorcontrib>Garofalo, A.M.</creatorcontrib><creatorcontrib>Lao, L.L.</creatorcontrib><creatorcontrib>Weisberg, D.B.</creatorcontrib><creatorcontrib>Meneghini, O.</creatorcontrib><creatorcontrib>Smith, S.P.</creatorcontrib><creatorcontrib>Lyons, B.C.</creatorcontrib><creatorcontrib>Staebler, G.M.</creatorcontrib><creatorcontrib>Ding, S.Y.</creatorcontrib><creatorcontrib>Huang, J.</creatorcontrib><creatorcontrib>Gong, X.</creatorcontrib><creatorcontrib>Qian, J.</creatorcontrib><creatorcontrib>Ren, Q.</creatorcontrib><creatorcontrib>Holcomb, C.T.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McClenaghan, J.</au><au>Garofalo, A.M.</au><au>Lao, L.L.</au><au>Weisberg, D.B.</au><au>Meneghini, O.</au><au>Smith, S.P.</au><au>Lyons, B.C.</au><au>Staebler, G.M.</au><au>Ding, S.Y.</au><au>Huang, J.</au><au>Gong, X.</au><au>Qian, J.</au><au>Ren, Q.</au><au>Holcomb, C.T.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER</atitle><jtitle>Nuclear fusion</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>60</volume><issue>4</issue><spage>46025</spage><pages>46025-</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><abstract>On DIII-D, the high βp scenario has an internal transport barrier (ITB), βN~βp~3,q95~10, and very high normalized confinement H98,y2~1.6. Recently, plasmas starting with these conditions have been dynamically driven to q95~6 and βp~2, where we find the ITB and high performance persist for five energy confinement times. These conditions are projected to meet the ITER steady-state goal of Q = 5. The ITB is maintained at lower βp with a strong reverse shear, consistent with predictions that negative central shear can lower the βp threshold for the ITB. There are two observed confinement states in the high βpscenario: H-mode confinement state with a high edge pedestal, and an enhanced confinement state with a low pedestal and an ITB. It has been observed in a scan of external resonant magnetic perturbation amplitude that when there are no large type-I ELMs, there is no transition to enhanced confinement. This is consistent with the proposed mechanism for ITB formation being a type-I ELM. Quasilinear gyro-Landau fluid predictive modeling of ITER suggests that only a modest reverse shear is required to achieve the ITB formation necessary for Q=5 when electromagnetic physics including the kinetic ballooning mode (KBM) is incorporated.</abstract><cop>United States</cop><pub>IOP Science</pub><doi>10.1088/1741-4326/ab74a0</doi><orcidid>https://orcid.org/0000-0003-3232-1581</orcidid><orcidid>https://orcid.org/0000-0002-1930-0439</orcidid><orcidid>https://orcid.org/0000-0002-1944-1733</orcidid><orcidid>https://orcid.org/0000-0001-5662-809X</orcidid><orcidid>https://orcid.org/0000-0003-4510-0884</orcidid><orcidid>https://orcid.org/0000-0002-8244-2448</orcidid><orcidid>https://orcid.org/000000015662809X</orcidid><orcidid>https://orcid.org/0000000219300439</orcidid><orcidid>https://orcid.org/0000000332321581</orcidid><orcidid>https://orcid.org/0000000345100884</orcidid><orcidid>https://orcid.org/0000000219441733</orcidid><orcidid>https://orcid.org/0000000282442448</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2020-04, Vol.60 (4), p.46025
issn 0029-5515
1741-4326
language eng
recordid cdi_osti_scitechconnect_1604324
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ITER, high β_p, ITB, transport
title Transport at high ${\beta_p}$ and development of candidate steady state scenarios for ITER
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20at%20high%20$%7B%5Cbeta_p%7D$%20and%20development%20of%20candidate%20steady%20state%20scenarios%20for%20ITER&rft.jtitle=Nuclear%20fusion&rft.au=McClenaghan,%20J.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2020-04-01&rft.volume=60&rft.issue=4&rft.spage=46025&rft.pages=46025-&rft.issn=0029-5515&rft.eissn=1741-4326&rft_id=info:doi/10.1088/1741-4326/ab74a0&rft_dat=%3Ccrossref_osti_%3E10_1088_1741_4326_ab74a0%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true