A low-rank solver for the stochastic unsteady Navier–Stokes problem

We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are col...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2020-06, Vol.364 (C), p.112948, Article 112948
Hauptverfasser: Elman, Howard C., Su, Tengfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 112948
container_title Computer methods in applied mechanics and engineering
container_volume 364
creator Elman, Howard C.
Su, Tengfei
description We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are collected and solved simultaneously. The problem is linearized with Picard’s method. To efficiently solve the linear systems at each step, we use low-rank tensor representations within the Krylov subspace method, which leads to significant reductions in storage requirements and computational costs. Combined with effective mean-based preconditioners and the idea of inexact solve, we show that only a small number of linear iterations are needed at each Picard step. The proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with different settings to demonstrate the computational efficiency. •Development of low-rank approximate solutions of stochastic-Galerkin formulations.•Demonstration of the utility of these representations for efficiency.•Use of tensor formats for representation of the solutions.•New efficient algorithms for “all-in-one” formulation of the time-dependent problem.•New preconditioners for linear systems arising from implicit time discretization.
doi_str_mv 10.1016/j.cma.2020.112948
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1603384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520301316</els_id><sourcerecordid>2438219459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a13b81e9fa6ffaf70bf74d2921d1db54be075bb18bc5128a471db330f299c9753</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AHdE11O5MNOBuGqa-pMYXahrwjCQzrQdKtCa7nwH39Ankcm4lg2BfN_NuQehSyATIDC9aSd6oyaU0PQGKnJ-hEbAS5FRYPwYjQjJi6zktDhFZyG0JB0OdIQWM7x2n5lX3QoHt94bj63zOC4NDtHppQqx0XjXhWhUfcDPat8Y__P1_RrdygS89a5am805OrFqHczF3z1G73eLt_lD9vRy_zifPWWaiSJmCljFwQirptYqW5LKlnlNBYUa6qrIK0PKoqqAV7oAylVepm_GiKVCaFEWbIyuhrkuYcmgm2j0UruuMzpKmBLGeJ5C10MowX3sTIiydTvfJS5Jc8YpiLwQKQVDSnsXgjdWbn2zUf4ggcheqWxlUip7pXJQmjq3Q8ekHXsRPYLptKkb3xPUrvmn_Qsq8H5s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438219459</pqid></control><display><type>article</type><title>A low-rank solver for the stochastic unsteady Navier–Stokes problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Elman, Howard C. ; Su, Tengfei</creator><creatorcontrib>Elman, Howard C. ; Su, Tengfei</creatorcontrib><description>We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are collected and solved simultaneously. The problem is linearized with Picard’s method. To efficiently solve the linear systems at each step, we use low-rank tensor representations within the Krylov subspace method, which leads to significant reductions in storage requirements and computational costs. Combined with effective mean-based preconditioners and the idea of inexact solve, we show that only a small number of linear iterations are needed at each Picard step. The proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with different settings to demonstrate the computational efficiency. •Development of low-rank approximate solutions of stochastic-Galerkin formulations.•Demonstration of the utility of these representations for efficiency.•Use of tensor formats for representation of the solutions.•New efficient algorithms for “all-in-one” formulation of the time-dependent problem.•New preconditioners for linear systems arising from implicit time discretization.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.112948</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; All-at-once system ; Computational fluid dynamics ; Computing costs ; Fluid flow ; Galerkin method ; Incompressible flow ; Iterative methods ; Linear systems ; Low-rank tensor approximation ; Navier-Stokes equations ; Stochastic Galerkin method ; Subspace methods ; Tensors ; Time-dependent Navier–Stokes ; Two dimensional flow ; Two dimensional models</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-06, Vol.364 (C), p.112948, Article 112948</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a13b81e9fa6ffaf70bf74d2921d1db54be075bb18bc5128a471db330f299c9753</citedby><cites>FETCH-LOGICAL-c395t-a13b81e9fa6ffaf70bf74d2921d1db54be075bb18bc5128a471db330f299c9753</cites><orcidid>0000-0001-7093-5643 ; 0000000170935643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782520301316$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1603384$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elman, Howard C.</creatorcontrib><creatorcontrib>Su, Tengfei</creatorcontrib><title>A low-rank solver for the stochastic unsteady Navier–Stokes problem</title><title>Computer methods in applied mechanics and engineering</title><description>We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are collected and solved simultaneously. The problem is linearized with Picard’s method. To efficiently solve the linear systems at each step, we use low-rank tensor representations within the Krylov subspace method, which leads to significant reductions in storage requirements and computational costs. Combined with effective mean-based preconditioners and the idea of inexact solve, we show that only a small number of linear iterations are needed at each Picard step. The proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with different settings to demonstrate the computational efficiency. •Development of low-rank approximate solutions of stochastic-Galerkin formulations.•Demonstration of the utility of these representations for efficiency.•Use of tensor formats for representation of the solutions.•New efficient algorithms for “all-in-one” formulation of the time-dependent problem.•New preconditioners for linear systems arising from implicit time discretization.</description><subject>Algorithms</subject><subject>All-at-once system</subject><subject>Computational fluid dynamics</subject><subject>Computing costs</subject><subject>Fluid flow</subject><subject>Galerkin method</subject><subject>Incompressible flow</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Low-rank tensor approximation</subject><subject>Navier-Stokes equations</subject><subject>Stochastic Galerkin method</subject><subject>Subspace methods</subject><subject>Tensors</subject><subject>Time-dependent Navier–Stokes</subject><subject>Two dimensional flow</subject><subject>Two dimensional models</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEURonRxFp9AHdE11O5MNOBuGqa-pMYXahrwjCQzrQdKtCa7nwH39Ankcm4lg2BfN_NuQehSyATIDC9aSd6oyaU0PQGKnJ-hEbAS5FRYPwYjQjJi6zktDhFZyG0JB0OdIQWM7x2n5lX3QoHt94bj63zOC4NDtHppQqx0XjXhWhUfcDPat8Y__P1_RrdygS89a5am805OrFqHczF3z1G73eLt_lD9vRy_zifPWWaiSJmCljFwQirptYqW5LKlnlNBYUa6qrIK0PKoqqAV7oAylVepm_GiKVCaFEWbIyuhrkuYcmgm2j0UruuMzpKmBLGeJ5C10MowX3sTIiydTvfJS5Jc8YpiLwQKQVDSnsXgjdWbn2zUf4ggcheqWxlUip7pXJQmjq3Q8ekHXsRPYLptKkb3xPUrvmn_Qsq8H5s</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Elman, Howard C.</creator><creator>Su, Tengfei</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7093-5643</orcidid><orcidid>https://orcid.org/0000000170935643</orcidid></search><sort><creationdate>20200601</creationdate><title>A low-rank solver for the stochastic unsteady Navier–Stokes problem</title><author>Elman, Howard C. ; Su, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a13b81e9fa6ffaf70bf74d2921d1db54be075bb18bc5128a471db330f299c9753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>All-at-once system</topic><topic>Computational fluid dynamics</topic><topic>Computing costs</topic><topic>Fluid flow</topic><topic>Galerkin method</topic><topic>Incompressible flow</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Low-rank tensor approximation</topic><topic>Navier-Stokes equations</topic><topic>Stochastic Galerkin method</topic><topic>Subspace methods</topic><topic>Tensors</topic><topic>Time-dependent Navier–Stokes</topic><topic>Two dimensional flow</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elman, Howard C.</creatorcontrib><creatorcontrib>Su, Tengfei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elman, Howard C.</au><au>Su, Tengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A low-rank solver for the stochastic unsteady Navier–Stokes problem</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>364</volume><issue>C</issue><spage>112948</spage><pages>112948-</pages><artnum>112948</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are collected and solved simultaneously. The problem is linearized with Picard’s method. To efficiently solve the linear systems at each step, we use low-rank tensor representations within the Krylov subspace method, which leads to significant reductions in storage requirements and computational costs. Combined with effective mean-based preconditioners and the idea of inexact solve, we show that only a small number of linear iterations are needed at each Picard step. The proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with different settings to demonstrate the computational efficiency. •Development of low-rank approximate solutions of stochastic-Galerkin formulations.•Demonstration of the utility of these representations for efficiency.•Use of tensor formats for representation of the solutions.•New efficient algorithms for “all-in-one” formulation of the time-dependent problem.•New preconditioners for linear systems arising from implicit time discretization.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.112948</doi><orcidid>https://orcid.org/0000-0001-7093-5643</orcidid><orcidid>https://orcid.org/0000000170935643</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2020-06, Vol.364 (C), p.112948, Article 112948
issn 0045-7825
1879-2138
language eng
recordid cdi_osti_scitechconnect_1603384
source Elsevier ScienceDirect Journals Complete
subjects Algorithms
All-at-once system
Computational fluid dynamics
Computing costs
Fluid flow
Galerkin method
Incompressible flow
Iterative methods
Linear systems
Low-rank tensor approximation
Navier-Stokes equations
Stochastic Galerkin method
Subspace methods
Tensors
Time-dependent Navier–Stokes
Two dimensional flow
Two dimensional models
title A low-rank solver for the stochastic unsteady Navier–Stokes problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20low-rank%20solver%20for%20the%20stochastic%20unsteady%20Navier%E2%80%93Stokes%20problem&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Elman,%20Howard%20C.&rft.date=2020-06-01&rft.volume=364&rft.issue=C&rft.spage=112948&rft.pages=112948-&rft.artnum=112948&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.112948&rft_dat=%3Cproquest_osti_%3E2438219459%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438219459&rft_id=info:pmid/&rft_els_id=S0045782520301316&rfr_iscdi=true