A low-rank solver for the stochastic unsteady Navier–Stokes problem
We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are col...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2020-06, Vol.364 (C), p.112948, Article 112948 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 112948 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 364 |
creator | Elman, Howard C. Su, Tengfei |
description | We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are collected and solved simultaneously. The problem is linearized with Picard’s method. To efficiently solve the linear systems at each step, we use low-rank tensor representations within the Krylov subspace method, which leads to significant reductions in storage requirements and computational costs. Combined with effective mean-based preconditioners and the idea of inexact solve, we show that only a small number of linear iterations are needed at each Picard step. The proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with different settings to demonstrate the computational efficiency.
•Development of low-rank approximate solutions of stochastic-Galerkin formulations.•Demonstration of the utility of these representations for efficiency.•Use of tensor formats for representation of the solutions.•New efficient algorithms for “all-in-one” formulation of the time-dependent problem.•New preconditioners for linear systems arising from implicit time discretization. |
doi_str_mv | 10.1016/j.cma.2020.112948 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1603384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782520301316</els_id><sourcerecordid>2438219459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-a13b81e9fa6ffaf70bf74d2921d1db54be075bb18bc5128a471db330f299c9753</originalsourceid><addsrcrecordid>eNp9kM1OAyEURonRxFp9AHdE11O5MNOBuGqa-pMYXahrwjCQzrQdKtCa7nwH39Ankcm4lg2BfN_NuQehSyATIDC9aSd6oyaU0PQGKnJ-hEbAS5FRYPwYjQjJi6zktDhFZyG0JB0OdIQWM7x2n5lX3QoHt94bj63zOC4NDtHppQqx0XjXhWhUfcDPat8Y__P1_RrdygS89a5am805OrFqHczF3z1G73eLt_lD9vRy_zifPWWaiSJmCljFwQirptYqW5LKlnlNBYUa6qrIK0PKoqqAV7oAylVepm_GiKVCaFEWbIyuhrkuYcmgm2j0UruuMzpKmBLGeJ5C10MowX3sTIiydTvfJS5Jc8YpiLwQKQVDSnsXgjdWbn2zUf4ggcheqWxlUip7pXJQmjq3Q8ekHXsRPYLptKkb3xPUrvmn_Qsq8H5s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438219459</pqid></control><display><type>article</type><title>A low-rank solver for the stochastic unsteady Navier–Stokes problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Elman, Howard C. ; Su, Tengfei</creator><creatorcontrib>Elman, Howard C. ; Su, Tengfei</creatorcontrib><description>We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are collected and solved simultaneously. The problem is linearized with Picard’s method. To efficiently solve the linear systems at each step, we use low-rank tensor representations within the Krylov subspace method, which leads to significant reductions in storage requirements and computational costs. Combined with effective mean-based preconditioners and the idea of inexact solve, we show that only a small number of linear iterations are needed at each Picard step. The proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with different settings to demonstrate the computational efficiency.
•Development of low-rank approximate solutions of stochastic-Galerkin formulations.•Demonstration of the utility of these representations for efficiency.•Use of tensor formats for representation of the solutions.•New efficient algorithms for “all-in-one” formulation of the time-dependent problem.•New preconditioners for linear systems arising from implicit time discretization.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2020.112948</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algorithms ; All-at-once system ; Computational fluid dynamics ; Computing costs ; Fluid flow ; Galerkin method ; Incompressible flow ; Iterative methods ; Linear systems ; Low-rank tensor approximation ; Navier-Stokes equations ; Stochastic Galerkin method ; Subspace methods ; Tensors ; Time-dependent Navier–Stokes ; Two dimensional flow ; Two dimensional models</subject><ispartof>Computer methods in applied mechanics and engineering, 2020-06, Vol.364 (C), p.112948, Article 112948</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-a13b81e9fa6ffaf70bf74d2921d1db54be075bb18bc5128a471db330f299c9753</citedby><cites>FETCH-LOGICAL-c395t-a13b81e9fa6ffaf70bf74d2921d1db54be075bb18bc5128a471db330f299c9753</cites><orcidid>0000-0001-7093-5643 ; 0000000170935643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782520301316$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1603384$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Elman, Howard C.</creatorcontrib><creatorcontrib>Su, Tengfei</creatorcontrib><title>A low-rank solver for the stochastic unsteady Navier–Stokes problem</title><title>Computer methods in applied mechanics and engineering</title><description>We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are collected and solved simultaneously. The problem is linearized with Picard’s method. To efficiently solve the linear systems at each step, we use low-rank tensor representations within the Krylov subspace method, which leads to significant reductions in storage requirements and computational costs. Combined with effective mean-based preconditioners and the idea of inexact solve, we show that only a small number of linear iterations are needed at each Picard step. The proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with different settings to demonstrate the computational efficiency.
•Development of low-rank approximate solutions of stochastic-Galerkin formulations.•Demonstration of the utility of these representations for efficiency.•Use of tensor formats for representation of the solutions.•New efficient algorithms for “all-in-one” formulation of the time-dependent problem.•New preconditioners for linear systems arising from implicit time discretization.</description><subject>Algorithms</subject><subject>All-at-once system</subject><subject>Computational fluid dynamics</subject><subject>Computing costs</subject><subject>Fluid flow</subject><subject>Galerkin method</subject><subject>Incompressible flow</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Low-rank tensor approximation</subject><subject>Navier-Stokes equations</subject><subject>Stochastic Galerkin method</subject><subject>Subspace methods</subject><subject>Tensors</subject><subject>Time-dependent Navier–Stokes</subject><subject>Two dimensional flow</subject><subject>Two dimensional models</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OAyEURonRxFp9AHdE11O5MNOBuGqa-pMYXahrwjCQzrQdKtCa7nwH39Ankcm4lg2BfN_NuQehSyATIDC9aSd6oyaU0PQGKnJ-hEbAS5FRYPwYjQjJi6zktDhFZyG0JB0OdIQWM7x2n5lX3QoHt94bj63zOC4NDtHppQqx0XjXhWhUfcDPat8Y__P1_RrdygS89a5am805OrFqHczF3z1G73eLt_lD9vRy_zifPWWaiSJmCljFwQirptYqW5LKlnlNBYUa6qrIK0PKoqqAV7oAylVepm_GiKVCaFEWbIyuhrkuYcmgm2j0UruuMzpKmBLGeJ5C10MowX3sTIiydTvfJS5Jc8YpiLwQKQVDSnsXgjdWbn2zUf4ggcheqWxlUip7pXJQmjq3Q8ekHXsRPYLptKkb3xPUrvmn_Qsq8H5s</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Elman, Howard C.</creator><creator>Su, Tengfei</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7093-5643</orcidid><orcidid>https://orcid.org/0000000170935643</orcidid></search><sort><creationdate>20200601</creationdate><title>A low-rank solver for the stochastic unsteady Navier–Stokes problem</title><author>Elman, Howard C. ; Su, Tengfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-a13b81e9fa6ffaf70bf74d2921d1db54be075bb18bc5128a471db330f299c9753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>All-at-once system</topic><topic>Computational fluid dynamics</topic><topic>Computing costs</topic><topic>Fluid flow</topic><topic>Galerkin method</topic><topic>Incompressible flow</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Low-rank tensor approximation</topic><topic>Navier-Stokes equations</topic><topic>Stochastic Galerkin method</topic><topic>Subspace methods</topic><topic>Tensors</topic><topic>Time-dependent Navier–Stokes</topic><topic>Two dimensional flow</topic><topic>Two dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elman, Howard C.</creatorcontrib><creatorcontrib>Su, Tengfei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elman, Howard C.</au><au>Su, Tengfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A low-rank solver for the stochastic unsteady Navier–Stokes problem</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>364</volume><issue>C</issue><spage>112948</spage><pages>112948-</pages><artnum>112948</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We study a low-rank iterative solver for the unsteady Navier–Stokes equations for incompressible flows with a stochastic viscosity. The equations are discretized using the stochastic Galerkin method, and we consider an all-at-once formulation where the algebraic systems at all the time steps are collected and solved simultaneously. The problem is linearized with Picard’s method. To efficiently solve the linear systems at each step, we use low-rank tensor representations within the Krylov subspace method, which leads to significant reductions in storage requirements and computational costs. Combined with effective mean-based preconditioners and the idea of inexact solve, we show that only a small number of linear iterations are needed at each Picard step. The proposed algorithm is tested with a model of flow in a two-dimensional symmetric step domain with different settings to demonstrate the computational efficiency.
•Development of low-rank approximate solutions of stochastic-Galerkin formulations.•Demonstration of the utility of these representations for efficiency.•Use of tensor formats for representation of the solutions.•New efficient algorithms for “all-in-one” formulation of the time-dependent problem.•New preconditioners for linear systems arising from implicit time discretization.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2020.112948</doi><orcidid>https://orcid.org/0000-0001-7093-5643</orcidid><orcidid>https://orcid.org/0000000170935643</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2020-06, Vol.364 (C), p.112948, Article 112948 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_osti_scitechconnect_1603384 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Algorithms All-at-once system Computational fluid dynamics Computing costs Fluid flow Galerkin method Incompressible flow Iterative methods Linear systems Low-rank tensor approximation Navier-Stokes equations Stochastic Galerkin method Subspace methods Tensors Time-dependent Navier–Stokes Two dimensional flow Two dimensional models |
title | A low-rank solver for the stochastic unsteady Navier–Stokes problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20low-rank%20solver%20for%20the%20stochastic%20unsteady%20Navier%E2%80%93Stokes%20problem&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Elman,%20Howard%20C.&rft.date=2020-06-01&rft.volume=364&rft.issue=C&rft.spage=112948&rft.pages=112948-&rft.artnum=112948&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2020.112948&rft_dat=%3Cproquest_osti_%3E2438219459%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438219459&rft_id=info:pmid/&rft_els_id=S0045782520301316&rfr_iscdi=true |