Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors
Liquid argon time projection chamber technology is an attractive choice for large neutrino detectors, as it provides a high-resolution active target and it is expected to be scalable to very large masses. Consequently, it has been chosen as the technology for the first module of the DUNE far detecto...
Gespeichert in:
Veröffentlicht in: | Journal of instrumentation 2020-03, Vol.15 (3), p.P03035-P03035, Article P03035 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | P03035 |
---|---|
container_issue | 3 |
container_start_page | P03035 |
container_title | Journal of instrumentation |
container_volume | 15 |
creator | Adams, D.L. Baird, M. Barr, G. Barros, N. Blake, A. Blaufuss, E. Booth, A. Brailsford, D. Buchanan, N. Carls, B. Chen, H. Convery, M. Geronimo, G. De Dealtry, T. Dharmapalan, R. Djurcic, Z. Fowler, J. Glavin, S. Gomes, R.A. Goodman, M.C. Graham, M. Greenler, L. Hahn, A. Hartnell, J. Herbst, R. Higuera, A. Himmel, A. Insler, J. Jacobsen, J. Junk, T. Kirby, B. Klein, J. Kudryavtsev, V.A. Kutter, T. Li, Y. Li, X. Lin, S. McConkey, N. Moura, C.A. Mufson, S. Nambiar, N. Nowak, J. Nunes, M. Paulos, R. Qian, X. Rodrigues, O. Sands, W. Santucci, G. Sharma, R. Sinev, G. Spooner, N.J.C. Stancu, I. Stefan, D. Stewart, J. Stock, J. Strauss, T. Sulej, R. Sun, Y. Thiesse, M. Thompson, L.F. Tsai, Y.T. Berg, R. Van Vieira, T. Wallbank, M. Wang, H. Wang, Y. Warburton, T.K. Wenman, D. Whittington, D. Wilson, R.J. Worcester, M. Yang, T. Yu, B. Zhang, C. |
description | Liquid argon time projection chamber technology is an attractive choice for large neutrino detectors, as it provides a high-resolution active target and it is expected to be scalable to very large masses. Consequently, it has been chosen as the technology for the first module of the DUNE far detector. However, the fiducial mass required for “far detectors” of the next generation of neutrino oscillation experiments far exceeds what has been demonstrated so far. Scaling to this larger mass, as well as the requirement for underground construction places a number of additional constraints on the design. A prototype 35-ton cryostat was built at Fermi National Acccelerator Laboratory to test the functionality of the components foreseen to be used in a very large far detector. The Phase I run, completed in early 2014, demonstrated that liquid argon could be maintained at sufficient purity in a membrane cryostat. A time projection chamber was installed for the Phase II run, which collected data in February and March of 2016. The Phase II run was a test of the modular anode plane assemblies with wrapped wires, cold readout electronics, and integrated photon detection systems. While the details of the design do not match exactly those chosen for the DUNE far detector, the 35-ton TPC prototype is a demonstration of the functionality of the basic components. Measurements are performed using the Phase II data to extract signal and noise characteristics and to align the detector components. A measurement of the electron lifetime is presented, and a novel technique for measuring a track's position based on pulse properties is described. |
doi_str_mv | 10.1088/1748-0221/15/03/P03035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1602989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384571948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-47870b5d59ef9898f452181d2b4ffa65786bf13a05e224ee73f3f1d59ef0729d3</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhQdRsFb_ggRdj81zJgNupD6hoAtdh8zMTZsynbRJptB_b2pFxI2r5CbnO_dwb5ZdEnxDsJQTUnKZY0rJhIgJZpM3zDATR9no5-P41_00OwthibGoBMejbHsPwc57pPsWrcEb51e6bwA5gzRiIo-uR53dDLZF2s9TEe0K0Nq7JTTRprpZ6FUNHumQgPQeXdytASUjZIY4eEBb8DvUJRpQCzFhzofz7MToLsDF9znOPh4f3qfP-ez16WV6N8sbXuCY81KWuBatqMBUspKGC0okaWnNjdGFKGVRG8I0FkApByiZYYZ8yXFJq5aNs6uDrwvRqtDY1H_RuL5PMRQpME2uSXR9EKX4mwFCVEs3-D7lUpRJLkpScZlUxUHVeBeCB6PW3q603ymC1X4Raj9jtZ-xIkJhpg6LSODtHzDF0PvhRa9t9x_-CR03jng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384571948</pqid></control><display><type>article</type><title>Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors</title><source>Institute of Physics Journals</source><creator>Adams, D.L. ; Baird, M. ; Barr, G. ; Barros, N. ; Blake, A. ; Blaufuss, E. ; Booth, A. ; Brailsford, D. ; Buchanan, N. ; Carls, B. ; Chen, H. ; Convery, M. ; Geronimo, G. De ; Dealtry, T. ; Dharmapalan, R. ; Djurcic, Z. ; Fowler, J. ; Glavin, S. ; Gomes, R.A. ; Goodman, M.C. ; Graham, M. ; Greenler, L. ; Hahn, A. ; Hartnell, J. ; Herbst, R. ; Higuera, A. ; Himmel, A. ; Insler, J. ; Jacobsen, J. ; Junk, T. ; Kirby, B. ; Klein, J. ; Kudryavtsev, V.A. ; Kutter, T. ; Li, Y. ; Li, X. ; Lin, S. ; McConkey, N. ; Moura, C.A. ; Mufson, S. ; Nambiar, N. ; Nowak, J. ; Nunes, M. ; Paulos, R. ; Qian, X. ; Rodrigues, O. ; Sands, W. ; Santucci, G. ; Sharma, R. ; Sinev, G. ; Spooner, N.J.C. ; Stancu, I. ; Stefan, D. ; Stewart, J. ; Stock, J. ; Strauss, T. ; Sulej, R. ; Sun, Y. ; Thiesse, M. ; Thompson, L.F. ; Tsai, Y.T. ; Berg, R. Van ; Vieira, T. ; Wallbank, M. ; Wang, H. ; Wang, Y. ; Warburton, T.K. ; Wenman, D. ; Whittington, D. ; Wilson, R.J. ; Worcester, M. ; Yang, T. ; Yu, B. ; Zhang, C.</creator><creatorcontrib>Adams, D.L. ; Baird, M. ; Barr, G. ; Barros, N. ; Blake, A. ; Blaufuss, E. ; Booth, A. ; Brailsford, D. ; Buchanan, N. ; Carls, B. ; Chen, H. ; Convery, M. ; Geronimo, G. De ; Dealtry, T. ; Dharmapalan, R. ; Djurcic, Z. ; Fowler, J. ; Glavin, S. ; Gomes, R.A. ; Goodman, M.C. ; Graham, M. ; Greenler, L. ; Hahn, A. ; Hartnell, J. ; Herbst, R. ; Higuera, A. ; Himmel, A. ; Insler, J. ; Jacobsen, J. ; Junk, T. ; Kirby, B. ; Klein, J. ; Kudryavtsev, V.A. ; Kutter, T. ; Li, Y. ; Li, X. ; Lin, S. ; McConkey, N. ; Moura, C.A. ; Mufson, S. ; Nambiar, N. ; Nowak, J. ; Nunes, M. ; Paulos, R. ; Qian, X. ; Rodrigues, O. ; Sands, W. ; Santucci, G. ; Sharma, R. ; Sinev, G. ; Spooner, N.J.C. ; Stancu, I. ; Stefan, D. ; Stewart, J. ; Stock, J. ; Strauss, T. ; Sulej, R. ; Sun, Y. ; Thiesse, M. ; Thompson, L.F. ; Tsai, Y.T. ; Berg, R. Van ; Vieira, T. ; Wallbank, M. ; Wang, H. ; Wang, Y. ; Warburton, T.K. ; Wenman, D. ; Whittington, D. ; Wilson, R.J. ; Worcester, M. ; Yang, T. ; Yu, B. ; Zhang, C. ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) ; Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Liquid argon time projection chamber technology is an attractive choice for large neutrino detectors, as it provides a high-resolution active target and it is expected to be scalable to very large masses. Consequently, it has been chosen as the technology for the first module of the DUNE far detector. However, the fiducial mass required for “far detectors” of the next generation of neutrino oscillation experiments far exceeds what has been demonstrated so far. Scaling to this larger mass, as well as the requirement for underground construction places a number of additional constraints on the design. A prototype 35-ton cryostat was built at Fermi National Acccelerator Laboratory to test the functionality of the components foreseen to be used in a very large far detector. The Phase I run, completed in early 2014, demonstrated that liquid argon could be maintained at sufficient purity in a membrane cryostat. A time projection chamber was installed for the Phase II run, which collected data in February and March of 2016. The Phase II run was a test of the modular anode plane assemblies with wrapped wires, cold readout electronics, and integrated photon detection systems. While the details of the design do not match exactly those chosen for the DUNE far detector, the 35-ton TPC prototype is a demonstration of the functionality of the basic components. Measurements are performed using the Phase II data to extract signal and noise characteristics and to align the detector components. A measurement of the electron lifetime is presented, and a novel technique for measuring a track's position based on pulse properties is described.</description><identifier>ISSN: 1748-0221</identifier><identifier>EISSN: 1748-0221</identifier><identifier>DOI: 10.1088/1748-0221/15/03/P03035</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Argon ; Data collection ; Detectors ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Large detector systems for particle and astroparticle physics ; Liquid detectors ; Neutrinos ; Position measurement ; Projection ; Prototypes ; Radiation counters ; Sensors ; Time projection chambers ; Underground construction</subject><ispartof>Journal of instrumentation, 2020-03, Vol.15 (3), p.P03035-P03035, Article P03035</ispartof><rights>Copyright IOP Publishing Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-47870b5d59ef9898f452181d2b4ffa65786bf13a05e224ee73f3f1d59ef0729d3</citedby><cites>FETCH-LOGICAL-c460t-47870b5d59ef9898f452181d2b4ffa65786bf13a05e224ee73f3f1d59ef0729d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1602989$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adams, D.L.</creatorcontrib><creatorcontrib>Baird, M.</creatorcontrib><creatorcontrib>Barr, G.</creatorcontrib><creatorcontrib>Barros, N.</creatorcontrib><creatorcontrib>Blake, A.</creatorcontrib><creatorcontrib>Blaufuss, E.</creatorcontrib><creatorcontrib>Booth, A.</creatorcontrib><creatorcontrib>Brailsford, D.</creatorcontrib><creatorcontrib>Buchanan, N.</creatorcontrib><creatorcontrib>Carls, B.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Convery, M.</creatorcontrib><creatorcontrib>Geronimo, G. De</creatorcontrib><creatorcontrib>Dealtry, T.</creatorcontrib><creatorcontrib>Dharmapalan, R.</creatorcontrib><creatorcontrib>Djurcic, Z.</creatorcontrib><creatorcontrib>Fowler, J.</creatorcontrib><creatorcontrib>Glavin, S.</creatorcontrib><creatorcontrib>Gomes, R.A.</creatorcontrib><creatorcontrib>Goodman, M.C.</creatorcontrib><creatorcontrib>Graham, M.</creatorcontrib><creatorcontrib>Greenler, L.</creatorcontrib><creatorcontrib>Hahn, A.</creatorcontrib><creatorcontrib>Hartnell, J.</creatorcontrib><creatorcontrib>Herbst, R.</creatorcontrib><creatorcontrib>Higuera, A.</creatorcontrib><creatorcontrib>Himmel, A.</creatorcontrib><creatorcontrib>Insler, J.</creatorcontrib><creatorcontrib>Jacobsen, J.</creatorcontrib><creatorcontrib>Junk, T.</creatorcontrib><creatorcontrib>Kirby, B.</creatorcontrib><creatorcontrib>Klein, J.</creatorcontrib><creatorcontrib>Kudryavtsev, V.A.</creatorcontrib><creatorcontrib>Kutter, T.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Lin, S.</creatorcontrib><creatorcontrib>McConkey, N.</creatorcontrib><creatorcontrib>Moura, C.A.</creatorcontrib><creatorcontrib>Mufson, S.</creatorcontrib><creatorcontrib>Nambiar, N.</creatorcontrib><creatorcontrib>Nowak, J.</creatorcontrib><creatorcontrib>Nunes, M.</creatorcontrib><creatorcontrib>Paulos, R.</creatorcontrib><creatorcontrib>Qian, X.</creatorcontrib><creatorcontrib>Rodrigues, O.</creatorcontrib><creatorcontrib>Sands, W.</creatorcontrib><creatorcontrib>Santucci, G.</creatorcontrib><creatorcontrib>Sharma, R.</creatorcontrib><creatorcontrib>Sinev, G.</creatorcontrib><creatorcontrib>Spooner, N.J.C.</creatorcontrib><creatorcontrib>Stancu, I.</creatorcontrib><creatorcontrib>Stefan, D.</creatorcontrib><creatorcontrib>Stewart, J.</creatorcontrib><creatorcontrib>Stock, J.</creatorcontrib><creatorcontrib>Strauss, T.</creatorcontrib><creatorcontrib>Sulej, R.</creatorcontrib><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Thiesse, M.</creatorcontrib><creatorcontrib>Thompson, L.F.</creatorcontrib><creatorcontrib>Tsai, Y.T.</creatorcontrib><creatorcontrib>Berg, R. Van</creatorcontrib><creatorcontrib>Vieira, T.</creatorcontrib><creatorcontrib>Wallbank, M.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Warburton, T.K.</creatorcontrib><creatorcontrib>Wenman, D.</creatorcontrib><creatorcontrib>Whittington, D.</creatorcontrib><creatorcontrib>Wilson, R.J.</creatorcontrib><creatorcontrib>Worcester, M.</creatorcontrib><creatorcontrib>Yang, T.</creatorcontrib><creatorcontrib>Yu, B.</creatorcontrib><creatorcontrib>Zhang, C.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors</title><title>Journal of instrumentation</title><description>Liquid argon time projection chamber technology is an attractive choice for large neutrino detectors, as it provides a high-resolution active target and it is expected to be scalable to very large masses. Consequently, it has been chosen as the technology for the first module of the DUNE far detector. However, the fiducial mass required for “far detectors” of the next generation of neutrino oscillation experiments far exceeds what has been demonstrated so far. Scaling to this larger mass, as well as the requirement for underground construction places a number of additional constraints on the design. A prototype 35-ton cryostat was built at Fermi National Acccelerator Laboratory to test the functionality of the components foreseen to be used in a very large far detector. The Phase I run, completed in early 2014, demonstrated that liquid argon could be maintained at sufficient purity in a membrane cryostat. A time projection chamber was installed for the Phase II run, which collected data in February and March of 2016. The Phase II run was a test of the modular anode plane assemblies with wrapped wires, cold readout electronics, and integrated photon detection systems. While the details of the design do not match exactly those chosen for the DUNE far detector, the 35-ton TPC prototype is a demonstration of the functionality of the basic components. Measurements are performed using the Phase II data to extract signal and noise characteristics and to align the detector components. A measurement of the electron lifetime is presented, and a novel technique for measuring a track's position based on pulse properties is described.</description><subject>Argon</subject><subject>Data collection</subject><subject>Detectors</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Large detector systems for particle and astroparticle physics</subject><subject>Liquid detectors</subject><subject>Neutrinos</subject><subject>Position measurement</subject><subject>Projection</subject><subject>Prototypes</subject><subject>Radiation counters</subject><subject>Sensors</subject><subject>Time projection chambers</subject><subject>Underground construction</subject><issn>1748-0221</issn><issn>1748-0221</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkUtLAzEUhQdRsFb_ggRdj81zJgNupD6hoAtdh8zMTZsynbRJptB_b2pFxI2r5CbnO_dwb5ZdEnxDsJQTUnKZY0rJhIgJZpM3zDATR9no5-P41_00OwthibGoBMejbHsPwc57pPsWrcEb51e6bwA5gzRiIo-uR53dDLZF2s9TEe0K0Nq7JTTRprpZ6FUNHumQgPQeXdytASUjZIY4eEBb8DvUJRpQCzFhzofz7MToLsDF9znOPh4f3qfP-ez16WV6N8sbXuCY81KWuBatqMBUspKGC0okaWnNjdGFKGVRG8I0FkApByiZYYZ8yXFJq5aNs6uDrwvRqtDY1H_RuL5PMRQpME2uSXR9EKX4mwFCVEs3-D7lUpRJLkpScZlUxUHVeBeCB6PW3q603ymC1X4Raj9jtZ-xIkJhpg6LSODtHzDF0PvhRa9t9x_-CR03jng</recordid><startdate>20200331</startdate><enddate>20200331</enddate><creator>Adams, D.L.</creator><creator>Baird, M.</creator><creator>Barr, G.</creator><creator>Barros, N.</creator><creator>Blake, A.</creator><creator>Blaufuss, E.</creator><creator>Booth, A.</creator><creator>Brailsford, D.</creator><creator>Buchanan, N.</creator><creator>Carls, B.</creator><creator>Chen, H.</creator><creator>Convery, M.</creator><creator>Geronimo, G. De</creator><creator>Dealtry, T.</creator><creator>Dharmapalan, R.</creator><creator>Djurcic, Z.</creator><creator>Fowler, J.</creator><creator>Glavin, S.</creator><creator>Gomes, R.A.</creator><creator>Goodman, M.C.</creator><creator>Graham, M.</creator><creator>Greenler, L.</creator><creator>Hahn, A.</creator><creator>Hartnell, J.</creator><creator>Herbst, R.</creator><creator>Higuera, A.</creator><creator>Himmel, A.</creator><creator>Insler, J.</creator><creator>Jacobsen, J.</creator><creator>Junk, T.</creator><creator>Kirby, B.</creator><creator>Klein, J.</creator><creator>Kudryavtsev, V.A.</creator><creator>Kutter, T.</creator><creator>Li, Y.</creator><creator>Li, X.</creator><creator>Lin, S.</creator><creator>McConkey, N.</creator><creator>Moura, C.A.</creator><creator>Mufson, S.</creator><creator>Nambiar, N.</creator><creator>Nowak, J.</creator><creator>Nunes, M.</creator><creator>Paulos, R.</creator><creator>Qian, X.</creator><creator>Rodrigues, O.</creator><creator>Sands, W.</creator><creator>Santucci, G.</creator><creator>Sharma, R.</creator><creator>Sinev, G.</creator><creator>Spooner, N.J.C.</creator><creator>Stancu, I.</creator><creator>Stefan, D.</creator><creator>Stewart, J.</creator><creator>Stock, J.</creator><creator>Strauss, T.</creator><creator>Sulej, R.</creator><creator>Sun, Y.</creator><creator>Thiesse, M.</creator><creator>Thompson, L.F.</creator><creator>Tsai, Y.T.</creator><creator>Berg, R. Van</creator><creator>Vieira, T.</creator><creator>Wallbank, M.</creator><creator>Wang, H.</creator><creator>Wang, Y.</creator><creator>Warburton, T.K.</creator><creator>Wenman, D.</creator><creator>Whittington, D.</creator><creator>Wilson, R.J.</creator><creator>Worcester, M.</creator><creator>Yang, T.</creator><creator>Yu, B.</creator><creator>Zhang, C.</creator><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200331</creationdate><title>Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors</title><author>Adams, D.L. ; Baird, M. ; Barr, G. ; Barros, N. ; Blake, A. ; Blaufuss, E. ; Booth, A. ; Brailsford, D. ; Buchanan, N. ; Carls, B. ; Chen, H. ; Convery, M. ; Geronimo, G. De ; Dealtry, T. ; Dharmapalan, R. ; Djurcic, Z. ; Fowler, J. ; Glavin, S. ; Gomes, R.A. ; Goodman, M.C. ; Graham, M. ; Greenler, L. ; Hahn, A. ; Hartnell, J. ; Herbst, R. ; Higuera, A. ; Himmel, A. ; Insler, J. ; Jacobsen, J. ; Junk, T. ; Kirby, B. ; Klein, J. ; Kudryavtsev, V.A. ; Kutter, T. ; Li, Y. ; Li, X. ; Lin, S. ; McConkey, N. ; Moura, C.A. ; Mufson, S. ; Nambiar, N. ; Nowak, J. ; Nunes, M. ; Paulos, R. ; Qian, X. ; Rodrigues, O. ; Sands, W. ; Santucci, G. ; Sharma, R. ; Sinev, G. ; Spooner, N.J.C. ; Stancu, I. ; Stefan, D. ; Stewart, J. ; Stock, J. ; Strauss, T. ; Sulej, R. ; Sun, Y. ; Thiesse, M. ; Thompson, L.F. ; Tsai, Y.T. ; Berg, R. Van ; Vieira, T. ; Wallbank, M. ; Wang, H. ; Wang, Y. ; Warburton, T.K. ; Wenman, D. ; Whittington, D. ; Wilson, R.J. ; Worcester, M. ; Yang, T. ; Yu, B. ; Zhang, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-47870b5d59ef9898f452181d2b4ffa65786bf13a05e224ee73f3f1d59ef0729d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Argon</topic><topic>Data collection</topic><topic>Detectors</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Large detector systems for particle and astroparticle physics</topic><topic>Liquid detectors</topic><topic>Neutrinos</topic><topic>Position measurement</topic><topic>Projection</topic><topic>Prototypes</topic><topic>Radiation counters</topic><topic>Sensors</topic><topic>Time projection chambers</topic><topic>Underground construction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adams, D.L.</creatorcontrib><creatorcontrib>Baird, M.</creatorcontrib><creatorcontrib>Barr, G.</creatorcontrib><creatorcontrib>Barros, N.</creatorcontrib><creatorcontrib>Blake, A.</creatorcontrib><creatorcontrib>Blaufuss, E.</creatorcontrib><creatorcontrib>Booth, A.</creatorcontrib><creatorcontrib>Brailsford, D.</creatorcontrib><creatorcontrib>Buchanan, N.</creatorcontrib><creatorcontrib>Carls, B.</creatorcontrib><creatorcontrib>Chen, H.</creatorcontrib><creatorcontrib>Convery, M.</creatorcontrib><creatorcontrib>Geronimo, G. De</creatorcontrib><creatorcontrib>Dealtry, T.</creatorcontrib><creatorcontrib>Dharmapalan, R.</creatorcontrib><creatorcontrib>Djurcic, Z.</creatorcontrib><creatorcontrib>Fowler, J.</creatorcontrib><creatorcontrib>Glavin, S.</creatorcontrib><creatorcontrib>Gomes, R.A.</creatorcontrib><creatorcontrib>Goodman, M.C.</creatorcontrib><creatorcontrib>Graham, M.</creatorcontrib><creatorcontrib>Greenler, L.</creatorcontrib><creatorcontrib>Hahn, A.</creatorcontrib><creatorcontrib>Hartnell, J.</creatorcontrib><creatorcontrib>Herbst, R.</creatorcontrib><creatorcontrib>Higuera, A.</creatorcontrib><creatorcontrib>Himmel, A.</creatorcontrib><creatorcontrib>Insler, J.</creatorcontrib><creatorcontrib>Jacobsen, J.</creatorcontrib><creatorcontrib>Junk, T.</creatorcontrib><creatorcontrib>Kirby, B.</creatorcontrib><creatorcontrib>Klein, J.</creatorcontrib><creatorcontrib>Kudryavtsev, V.A.</creatorcontrib><creatorcontrib>Kutter, T.</creatorcontrib><creatorcontrib>Li, Y.</creatorcontrib><creatorcontrib>Li, X.</creatorcontrib><creatorcontrib>Lin, S.</creatorcontrib><creatorcontrib>McConkey, N.</creatorcontrib><creatorcontrib>Moura, C.A.</creatorcontrib><creatorcontrib>Mufson, S.</creatorcontrib><creatorcontrib>Nambiar, N.</creatorcontrib><creatorcontrib>Nowak, J.</creatorcontrib><creatorcontrib>Nunes, M.</creatorcontrib><creatorcontrib>Paulos, R.</creatorcontrib><creatorcontrib>Qian, X.</creatorcontrib><creatorcontrib>Rodrigues, O.</creatorcontrib><creatorcontrib>Sands, W.</creatorcontrib><creatorcontrib>Santucci, G.</creatorcontrib><creatorcontrib>Sharma, R.</creatorcontrib><creatorcontrib>Sinev, G.</creatorcontrib><creatorcontrib>Spooner, N.J.C.</creatorcontrib><creatorcontrib>Stancu, I.</creatorcontrib><creatorcontrib>Stefan, D.</creatorcontrib><creatorcontrib>Stewart, J.</creatorcontrib><creatorcontrib>Stock, J.</creatorcontrib><creatorcontrib>Strauss, T.</creatorcontrib><creatorcontrib>Sulej, R.</creatorcontrib><creatorcontrib>Sun, Y.</creatorcontrib><creatorcontrib>Thiesse, M.</creatorcontrib><creatorcontrib>Thompson, L.F.</creatorcontrib><creatorcontrib>Tsai, Y.T.</creatorcontrib><creatorcontrib>Berg, R. Van</creatorcontrib><creatorcontrib>Vieira, T.</creatorcontrib><creatorcontrib>Wallbank, M.</creatorcontrib><creatorcontrib>Wang, H.</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Warburton, T.K.</creatorcontrib><creatorcontrib>Wenman, D.</creatorcontrib><creatorcontrib>Whittington, D.</creatorcontrib><creatorcontrib>Wilson, R.J.</creatorcontrib><creatorcontrib>Worcester, M.</creatorcontrib><creatorcontrib>Yang, T.</creatorcontrib><creatorcontrib>Yu, B.</creatorcontrib><creatorcontrib>Zhang, C.</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><creatorcontrib>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of instrumentation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adams, D.L.</au><au>Baird, M.</au><au>Barr, G.</au><au>Barros, N.</au><au>Blake, A.</au><au>Blaufuss, E.</au><au>Booth, A.</au><au>Brailsford, D.</au><au>Buchanan, N.</au><au>Carls, B.</au><au>Chen, H.</au><au>Convery, M.</au><au>Geronimo, G. De</au><au>Dealtry, T.</au><au>Dharmapalan, R.</au><au>Djurcic, Z.</au><au>Fowler, J.</au><au>Glavin, S.</au><au>Gomes, R.A.</au><au>Goodman, M.C.</au><au>Graham, M.</au><au>Greenler, L.</au><au>Hahn, A.</au><au>Hartnell, J.</au><au>Herbst, R.</au><au>Higuera, A.</au><au>Himmel, A.</au><au>Insler, J.</au><au>Jacobsen, J.</au><au>Junk, T.</au><au>Kirby, B.</au><au>Klein, J.</au><au>Kudryavtsev, V.A.</au><au>Kutter, T.</au><au>Li, Y.</au><au>Li, X.</au><au>Lin, S.</au><au>McConkey, N.</au><au>Moura, C.A.</au><au>Mufson, S.</au><au>Nambiar, N.</au><au>Nowak, J.</au><au>Nunes, M.</au><au>Paulos, R.</au><au>Qian, X.</au><au>Rodrigues, O.</au><au>Sands, W.</au><au>Santucci, G.</au><au>Sharma, R.</au><au>Sinev, G.</au><au>Spooner, N.J.C.</au><au>Stancu, I.</au><au>Stefan, D.</au><au>Stewart, J.</au><au>Stock, J.</au><au>Strauss, T.</au><au>Sulej, R.</au><au>Sun, Y.</au><au>Thiesse, M.</au><au>Thompson, L.F.</au><au>Tsai, Y.T.</au><au>Berg, R. Van</au><au>Vieira, T.</au><au>Wallbank, M.</au><au>Wang, H.</au><au>Wang, Y.</au><au>Warburton, T.K.</au><au>Wenman, D.</au><au>Whittington, D.</au><au>Wilson, R.J.</au><au>Worcester, M.</au><au>Yang, T.</au><au>Yu, B.</au><au>Zhang, C.</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><aucorp>Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors</atitle><jtitle>Journal of instrumentation</jtitle><date>2020-03-31</date><risdate>2020</risdate><volume>15</volume><issue>3</issue><spage>P03035</spage><epage>P03035</epage><pages>P03035-P03035</pages><artnum>P03035</artnum><issn>1748-0221</issn><eissn>1748-0221</eissn><abstract>Liquid argon time projection chamber technology is an attractive choice for large neutrino detectors, as it provides a high-resolution active target and it is expected to be scalable to very large masses. Consequently, it has been chosen as the technology for the first module of the DUNE far detector. However, the fiducial mass required for “far detectors” of the next generation of neutrino oscillation experiments far exceeds what has been demonstrated so far. Scaling to this larger mass, as well as the requirement for underground construction places a number of additional constraints on the design. A prototype 35-ton cryostat was built at Fermi National Acccelerator Laboratory to test the functionality of the components foreseen to be used in a very large far detector. The Phase I run, completed in early 2014, demonstrated that liquid argon could be maintained at sufficient purity in a membrane cryostat. A time projection chamber was installed for the Phase II run, which collected data in February and March of 2016. The Phase II run was a test of the modular anode plane assemblies with wrapped wires, cold readout electronics, and integrated photon detection systems. While the details of the design do not match exactly those chosen for the DUNE far detector, the 35-ton TPC prototype is a demonstration of the functionality of the basic components. Measurements are performed using the Phase II data to extract signal and noise characteristics and to align the detector components. A measurement of the electron lifetime is presented, and a novel technique for measuring a track's position based on pulse properties is described.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1748-0221/15/03/P03035</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-0221 |
ispartof | Journal of instrumentation, 2020-03, Vol.15 (3), p.P03035-P03035, Article P03035 |
issn | 1748-0221 1748-0221 |
language | eng |
recordid | cdi_osti_scitechconnect_1602989 |
source | Institute of Physics Journals |
subjects | Argon Data collection Detectors INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY Large detector systems for particle and astroparticle physics Liquid detectors Neutrinos Position measurement Projection Prototypes Radiation counters Sensors Time projection chambers Underground construction |
title | Design and performance of a 35-ton liquid argon time projection chamber as a prototype for future very large detectors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A24%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20performance%20of%20a%2035-ton%20liquid%20argon%20time%20projection%20chamber%20as%20a%20prototype%20for%20future%20very%20large%20detectors&rft.jtitle=Journal%20of%20instrumentation&rft.au=Adams,%20D.L.&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2020-03-31&rft.volume=15&rft.issue=3&rft.spage=P03035&rft.epage=P03035&rft.pages=P03035-P03035&rft.artnum=P03035&rft.issn=1748-0221&rft.eissn=1748-0221&rft_id=info:doi/10.1088/1748-0221/15/03/P03035&rft_dat=%3Cproquest_osti_%3E2384571948%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384571948&rft_id=info:pmid/&rfr_iscdi=true |