QCD equation of state matched to lattice data and exhibiting a critical point singularity
We construct a family of equations of state for QCD in the temperature range 30MeV≤T≤800MeV and in the chemical potential range 0≤μB≤450MeV. These equations of state match available lattice QCD results up to O(μB4) and in each of them we place a critical point in the three-dimensional (3D) Ising mod...
Gespeichert in:
Veröffentlicht in: | Phys.Rev.C 2020-03, Vol.101 (3), Article 034901 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Phys.Rev.C |
container_volume | 101 |
creator | Parotto, Paolo Bluhm, Marcus Mroczek, Debora Nahrgang, Marlene Noronha-Hostler, J. Rajagopal, Krishna Ratti, Claudia Schäfer, Thomas Stephanov, Mikhail |
description | We construct a family of equations of state for QCD in the temperature range 30MeV≤T≤800MeV and in the chemical potential range 0≤μB≤450MeV. These equations of state match available lattice QCD results up to O(μB4) and in each of them we place a critical point in the three-dimensional (3D) Ising model universality class. The position of this critical point can be chosen in the range of chemical potentials covered by the second Beam Energy Scan at the Relativistic Heavy Ion Collider. We discuss possible choices for the free parameters, which arise from mapping the Ising model onto QCD. Our results for the pressure, entropy density, baryon density, energy density, and speed of sound can be used as inputs in the hydrodynamical simulations of the fireball created in heavy ion collisions. We also show our result for the second cumulant of the baryon number in thermal equilibrium, displaying its divergence at the critical point. In the future, comparisons between RHIC data and the output of the hydrodynamic simulations, including calculations of fluctuation observables, built upon the model equations of state that we have constructed may be used to locate the critical point in the QCD phase diagram, if there is one to be found. |
doi_str_mv | 10.1103/PhysRevC.101.034901 |
format | Article |
fullrecord | <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1602367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01801892v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-215ce197ad85a4b40133ec4378b48b5d3808d7068196a99b9aa40180ab2125bb3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWGp_gZfgzcPWzGY_kmOpHxUKfqAHT2GSTd3Idrdu0mL_vSmrPc3LwzMD8xJyCWwKwPjNc733r3Y3nwKDKeOZZHBCRmlWyERKyU-PWeTnZOL9F2MMCiZLYCPy8TK_pfZ7i8F1Le1W1AcMlq4xmNpWNHS0wRCcsbTCgBTbitqf2mkXXPtJkZo-JoMN3XSuDdRHum0wwv0FOVth4-3kb47J-_3d23yRLJ8eHuezZWKyFEKSQm4syBIrkWOmMwacW5PxUuhM6LzigomqZIUAWaCUWiJGRzDUKaS51nxMroa7nQ9OeeOCNbXp2taaoOKfKS_KKF0PUo2N2vRujf1edejUYrZUB3Y4CUKmO4guH1zTd973dnVcAKYOjav_xiMANTTOfwHp4nQv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>QCD equation of state matched to lattice data and exhibiting a critical point singularity</title><source>American Physical Society Journals</source><creator>Parotto, Paolo ; Bluhm, Marcus ; Mroczek, Debora ; Nahrgang, Marlene ; Noronha-Hostler, J. ; Rajagopal, Krishna ; Ratti, Claudia ; Schäfer, Thomas ; Stephanov, Mikhail</creator><creatorcontrib>Parotto, Paolo ; Bluhm, Marcus ; Mroczek, Debora ; Nahrgang, Marlene ; Noronha-Hostler, J. ; Rajagopal, Krishna ; Ratti, Claudia ; Schäfer, Thomas ; Stephanov, Mikhail ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>We construct a family of equations of state for QCD in the temperature range 30MeV≤T≤800MeV and in the chemical potential range 0≤μB≤450MeV. These equations of state match available lattice QCD results up to O(μB4) and in each of them we place a critical point in the three-dimensional (3D) Ising model universality class. The position of this critical point can be chosen in the range of chemical potentials covered by the second Beam Energy Scan at the Relativistic Heavy Ion Collider. We discuss possible choices for the free parameters, which arise from mapping the Ising model onto QCD. Our results for the pressure, entropy density, baryon density, energy density, and speed of sound can be used as inputs in the hydrodynamical simulations of the fireball created in heavy ion collisions. We also show our result for the second cumulant of the baryon number in thermal equilibrium, displaying its divergence at the critical point. In the future, comparisons between RHIC data and the output of the hydrodynamic simulations, including calculations of fluctuation observables, built upon the model equations of state that we have constructed may be used to locate the critical point in the QCD phase diagram, if there is one to be found.</description><identifier>ISSN: 2469-9985</identifier><identifier>EISSN: 2469-9993</identifier><identifier>DOI: 10.1103/PhysRevC.101.034901</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>equations of state of nuclear matter ; High Energy Physics - Lattice ; High Energy Physics - Phenomenology ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Nuclear Theory ; Physics ; QCD phase transitions ; quark-gluon plasma ; relativistic heavy-ion collisions</subject><ispartof>Phys.Rev.C, 2020-03, Vol.101 (3), Article 034901</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-215ce197ad85a4b40133ec4378b48b5d3808d7068196a99b9aa40180ab2125bb3</citedby><cites>FETCH-LOGICAL-c421t-215ce197ad85a4b40133ec4378b48b5d3808d7068196a99b9aa40180ab2125bb3</cites><orcidid>0000-0002-4686-941X ; 0000-0002-1105-5619 ; 000000024686941X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01801892$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1602367$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parotto, Paolo</creatorcontrib><creatorcontrib>Bluhm, Marcus</creatorcontrib><creatorcontrib>Mroczek, Debora</creatorcontrib><creatorcontrib>Nahrgang, Marlene</creatorcontrib><creatorcontrib>Noronha-Hostler, J.</creatorcontrib><creatorcontrib>Rajagopal, Krishna</creatorcontrib><creatorcontrib>Ratti, Claudia</creatorcontrib><creatorcontrib>Schäfer, Thomas</creatorcontrib><creatorcontrib>Stephanov, Mikhail</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>QCD equation of state matched to lattice data and exhibiting a critical point singularity</title><title>Phys.Rev.C</title><description>We construct a family of equations of state for QCD in the temperature range 30MeV≤T≤800MeV and in the chemical potential range 0≤μB≤450MeV. These equations of state match available lattice QCD results up to O(μB4) and in each of them we place a critical point in the three-dimensional (3D) Ising model universality class. The position of this critical point can be chosen in the range of chemical potentials covered by the second Beam Energy Scan at the Relativistic Heavy Ion Collider. We discuss possible choices for the free parameters, which arise from mapping the Ising model onto QCD. Our results for the pressure, entropy density, baryon density, energy density, and speed of sound can be used as inputs in the hydrodynamical simulations of the fireball created in heavy ion collisions. We also show our result for the second cumulant of the baryon number in thermal equilibrium, displaying its divergence at the critical point. In the future, comparisons between RHIC data and the output of the hydrodynamic simulations, including calculations of fluctuation observables, built upon the model equations of state that we have constructed may be used to locate the critical point in the QCD phase diagram, if there is one to be found.</description><subject>equations of state of nuclear matter</subject><subject>High Energy Physics - Lattice</subject><subject>High Energy Physics - Phenomenology</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Nuclear Theory</subject><subject>Physics</subject><subject>QCD phase transitions</subject><subject>quark-gluon plasma</subject><subject>relativistic heavy-ion collisions</subject><issn>2469-9985</issn><issn>2469-9993</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWGp_gZfgzcPWzGY_kmOpHxUKfqAHT2GSTd3Idrdu0mL_vSmrPc3LwzMD8xJyCWwKwPjNc733r3Y3nwKDKeOZZHBCRmlWyERKyU-PWeTnZOL9F2MMCiZLYCPy8TK_pfZ7i8F1Le1W1AcMlq4xmNpWNHS0wRCcsbTCgBTbitqf2mkXXPtJkZo-JoMN3XSuDdRHum0wwv0FOVth4-3kb47J-_3d23yRLJ8eHuezZWKyFEKSQm4syBIrkWOmMwacW5PxUuhM6LzigomqZIUAWaCUWiJGRzDUKaS51nxMroa7nQ9OeeOCNbXp2taaoOKfKS_KKF0PUo2N2vRujf1edejUYrZUB3Y4CUKmO4guH1zTd973dnVcAKYOjav_xiMANTTOfwHp4nQv</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Parotto, Paolo</creator><creator>Bluhm, Marcus</creator><creator>Mroczek, Debora</creator><creator>Nahrgang, Marlene</creator><creator>Noronha-Hostler, J.</creator><creator>Rajagopal, Krishna</creator><creator>Ratti, Claudia</creator><creator>Schäfer, Thomas</creator><creator>Stephanov, Mikhail</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4686-941X</orcidid><orcidid>https://orcid.org/0000-0002-1105-5619</orcidid><orcidid>https://orcid.org/000000024686941X</orcidid></search><sort><creationdate>20200302</creationdate><title>QCD equation of state matched to lattice data and exhibiting a critical point singularity</title><author>Parotto, Paolo ; Bluhm, Marcus ; Mroczek, Debora ; Nahrgang, Marlene ; Noronha-Hostler, J. ; Rajagopal, Krishna ; Ratti, Claudia ; Schäfer, Thomas ; Stephanov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-215ce197ad85a4b40133ec4378b48b5d3808d7068196a99b9aa40180ab2125bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>equations of state of nuclear matter</topic><topic>High Energy Physics - Lattice</topic><topic>High Energy Physics - Phenomenology</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Nuclear Theory</topic><topic>Physics</topic><topic>QCD phase transitions</topic><topic>quark-gluon plasma</topic><topic>relativistic heavy-ion collisions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parotto, Paolo</creatorcontrib><creatorcontrib>Bluhm, Marcus</creatorcontrib><creatorcontrib>Mroczek, Debora</creatorcontrib><creatorcontrib>Nahrgang, Marlene</creatorcontrib><creatorcontrib>Noronha-Hostler, J.</creatorcontrib><creatorcontrib>Rajagopal, Krishna</creatorcontrib><creatorcontrib>Ratti, Claudia</creatorcontrib><creatorcontrib>Schäfer, Thomas</creatorcontrib><creatorcontrib>Stephanov, Mikhail</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Phys.Rev.C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parotto, Paolo</au><au>Bluhm, Marcus</au><au>Mroczek, Debora</au><au>Nahrgang, Marlene</au><au>Noronha-Hostler, J.</au><au>Rajagopal, Krishna</au><au>Ratti, Claudia</au><au>Schäfer, Thomas</au><au>Stephanov, Mikhail</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>QCD equation of state matched to lattice data and exhibiting a critical point singularity</atitle><jtitle>Phys.Rev.C</jtitle><date>2020-03-02</date><risdate>2020</risdate><volume>101</volume><issue>3</issue><artnum>034901</artnum><issn>2469-9985</issn><eissn>2469-9993</eissn><abstract>We construct a family of equations of state for QCD in the temperature range 30MeV≤T≤800MeV and in the chemical potential range 0≤μB≤450MeV. These equations of state match available lattice QCD results up to O(μB4) and in each of them we place a critical point in the three-dimensional (3D) Ising model universality class. The position of this critical point can be chosen in the range of chemical potentials covered by the second Beam Energy Scan at the Relativistic Heavy Ion Collider. We discuss possible choices for the free parameters, which arise from mapping the Ising model onto QCD. Our results for the pressure, entropy density, baryon density, energy density, and speed of sound can be used as inputs in the hydrodynamical simulations of the fireball created in heavy ion collisions. We also show our result for the second cumulant of the baryon number in thermal equilibrium, displaying its divergence at the critical point. In the future, comparisons between RHIC data and the output of the hydrodynamic simulations, including calculations of fluctuation observables, built upon the model equations of state that we have constructed may be used to locate the critical point in the QCD phase diagram, if there is one to be found.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevC.101.034901</doi><orcidid>https://orcid.org/0000-0002-4686-941X</orcidid><orcidid>https://orcid.org/0000-0002-1105-5619</orcidid><orcidid>https://orcid.org/000000024686941X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9985 |
ispartof | Phys.Rev.C, 2020-03, Vol.101 (3), Article 034901 |
issn | 2469-9985 2469-9993 |
language | eng |
recordid | cdi_osti_scitechconnect_1602367 |
source | American Physical Society Journals |
subjects | equations of state of nuclear matter High Energy Physics - Lattice High Energy Physics - Phenomenology NUCLEAR PHYSICS AND RADIATION PHYSICS Nuclear Theory Physics QCD phase transitions quark-gluon plasma relativistic heavy-ion collisions |
title | QCD equation of state matched to lattice data and exhibiting a critical point singularity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=QCD%20equation%20of%20state%20matched%20to%20lattice%20data%20and%20exhibiting%20a%20critical%20point%20singularity&rft.jtitle=Phys.Rev.C&rft.au=Parotto,%20Paolo&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2020-03-02&rft.volume=101&rft.issue=3&rft.artnum=034901&rft.issn=2469-9985&rft.eissn=2469-9993&rft_id=info:doi/10.1103/PhysRevC.101.034901&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_01801892v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |