Advances in Multiscale Modeling of Lignocellulosic Biomass
Applications and associated processing technologies of lignocellulosic biomass are becoming increasingly important as we endeavor to meet societal demand for fuels, chemicals, and materials from renewable resources. Meanwhile, the rapidly expanding availability and capabilities of high-performance c...
Gespeichert in:
Veröffentlicht in: | ACS sustainable chemistry & engineering 2020-03, Vol.8 (9), p.3512-3531 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3531 |
---|---|
container_issue | 9 |
container_start_page | 3512 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 8 |
creator | Ciesielski, Peter N Pecha, M. Brennan Lattanzi, Aaron M Bharadwaj, Vivek S Crowley, Meagan F Bu, Lintao Vermaas, Josh V Steirer, K. Xerxes Crowley, Michael F |
description | Applications and associated processing technologies of lignocellulosic biomass are becoming increasingly important as we endeavor to meet societal demand for fuels, chemicals, and materials from renewable resources. Meanwhile, the rapidly expanding availability and capabilities of high-performance computing present an unprecedented opportunity to accelerate development of technologies surrounding lignocellulose utilization. In order to realize this potential, suitable modeling frameworks must be constructed that effectively capture the multiscale complexity and tremendous variety exhibited by lignocellulosic materials. In our assessment of previous endeavors toward this goal, several important shortcomings have been identified: (1) the lack of multiscale integration strategies that capture emergent properties and behaviors spanning different length scales and (2) the inability of many modeling approaches to effectively capture the variability and diversity of lignocellulose that arise from both natural and process-induced sources. In this Perspective, we survey previous modeling approaches for lignocellulose and simulation processes involving its chemical and mechanical transformation and suggest opportunities for future development to enhance the utility of computational tools to address barriers to widespread adoption of a renewable bioeconomy. |
doi_str_mv | 10.1021/acssuschemeng.9b07415 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1602174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b078151395</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-dce912f1dfb84a6fabe87770b53d0d788f1361beb14e606615daa4defa66fab83</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWGp_grB435rZj2zWWy1ahRYveg7ZZNKmbBPZ2RX8925pD3pyLjMwzzswD2O3wOfAM7jXhmggs8MDhu28bnhVQHnBJhkImfJClpe_5ms2I9rzseo6zyRM2MPCfulgkBIfks3Q9p6MbjHZRIutD9skumTttyEabNuhjeRN8ujjQRPdsCunW8LZuU_Zx_PT-_IlXb-tXpeLdapzUfepNVhD5sC6RhZaON2grKqKN2Vuua2kdJALaLCBAgUXAkqrdWHRaXGEZT5ld6e7kXqvyPgezc7EEND0CsQooSpGqDxBpotEHTr12fmD7r4VcHUUpf6IUmdRYw5OuXGt9nHowvjKP5kf_RJxng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Advances in Multiscale Modeling of Lignocellulosic Biomass</title><source>ACS Publications</source><creator>Ciesielski, Peter N ; Pecha, M. Brennan ; Lattanzi, Aaron M ; Bharadwaj, Vivek S ; Crowley, Meagan F ; Bu, Lintao ; Vermaas, Josh V ; Steirer, K. Xerxes ; Crowley, Michael F</creator><creatorcontrib>Ciesielski, Peter N ; Pecha, M. Brennan ; Lattanzi, Aaron M ; Bharadwaj, Vivek S ; Crowley, Meagan F ; Bu, Lintao ; Vermaas, Josh V ; Steirer, K. Xerxes ; Crowley, Michael F ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Applications and associated processing technologies of lignocellulosic biomass are becoming increasingly important as we endeavor to meet societal demand for fuels, chemicals, and materials from renewable resources. Meanwhile, the rapidly expanding availability and capabilities of high-performance computing present an unprecedented opportunity to accelerate development of technologies surrounding lignocellulose utilization. In order to realize this potential, suitable modeling frameworks must be constructed that effectively capture the multiscale complexity and tremendous variety exhibited by lignocellulosic materials. In our assessment of previous endeavors toward this goal, several important shortcomings have been identified: (1) the lack of multiscale integration strategies that capture emergent properties and behaviors spanning different length scales and (2) the inability of many modeling approaches to effectively capture the variability and diversity of lignocellulose that arise from both natural and process-induced sources. In this Perspective, we survey previous modeling approaches for lignocellulose and simulation processes involving its chemical and mechanical transformation and suggest opportunities for future development to enhance the utility of computational tools to address barriers to widespread adoption of a renewable bioeconomy.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.9b07415</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>09 BIOMASS FUELS ; bio-based materials ; bioenergy ; FCICPL ; high-performance computing ; lignocellulose ; multiscale modeling</subject><ispartof>ACS sustainable chemistry & engineering, 2020-03, Vol.8 (9), p.3512-3531</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-dce912f1dfb84a6fabe87770b53d0d788f1361beb14e606615daa4defa66fab83</citedby><cites>FETCH-LOGICAL-a369t-dce912f1dfb84a6fabe87770b53d0d788f1361beb14e606615daa4defa66fab83</cites><orcidid>0000-0001-5851-9807 ; 0000-0001-5163-9398 ; 0000-0003-3360-9210 ; 0000-0003-3139-6469 ; 0000000333609210 ; 0000000208948504 ; 0000000331396469 ; 0000000158519807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.9b07415$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.9b07415$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1602174$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciesielski, Peter N</creatorcontrib><creatorcontrib>Pecha, M. Brennan</creatorcontrib><creatorcontrib>Lattanzi, Aaron M</creatorcontrib><creatorcontrib>Bharadwaj, Vivek S</creatorcontrib><creatorcontrib>Crowley, Meagan F</creatorcontrib><creatorcontrib>Bu, Lintao</creatorcontrib><creatorcontrib>Vermaas, Josh V</creatorcontrib><creatorcontrib>Steirer, K. Xerxes</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Advances in Multiscale Modeling of Lignocellulosic Biomass</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Applications and associated processing technologies of lignocellulosic biomass are becoming increasingly important as we endeavor to meet societal demand for fuels, chemicals, and materials from renewable resources. Meanwhile, the rapidly expanding availability and capabilities of high-performance computing present an unprecedented opportunity to accelerate development of technologies surrounding lignocellulose utilization. In order to realize this potential, suitable modeling frameworks must be constructed that effectively capture the multiscale complexity and tremendous variety exhibited by lignocellulosic materials. In our assessment of previous endeavors toward this goal, several important shortcomings have been identified: (1) the lack of multiscale integration strategies that capture emergent properties and behaviors spanning different length scales and (2) the inability of many modeling approaches to effectively capture the variability and diversity of lignocellulose that arise from both natural and process-induced sources. In this Perspective, we survey previous modeling approaches for lignocellulose and simulation processes involving its chemical and mechanical transformation and suggest opportunities for future development to enhance the utility of computational tools to address barriers to widespread adoption of a renewable bioeconomy.</description><subject>09 BIOMASS FUELS</subject><subject>bio-based materials</subject><subject>bioenergy</subject><subject>FCICPL</subject><subject>high-performance computing</subject><subject>lignocellulose</subject><subject>multiscale modeling</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWGp_grB435rZj2zWWy1ahRYveg7ZZNKmbBPZ2RX8925pD3pyLjMwzzswD2O3wOfAM7jXhmggs8MDhu28bnhVQHnBJhkImfJClpe_5ms2I9rzseo6zyRM2MPCfulgkBIfks3Q9p6MbjHZRIutD9skumTttyEabNuhjeRN8ujjQRPdsCunW8LZuU_Zx_PT-_IlXb-tXpeLdapzUfepNVhD5sC6RhZaON2grKqKN2Vuua2kdJALaLCBAgUXAkqrdWHRaXGEZT5ld6e7kXqvyPgezc7EEND0CsQooSpGqDxBpotEHTr12fmD7r4VcHUUpf6IUmdRYw5OuXGt9nHowvjKP5kf_RJxng</recordid><startdate>20200309</startdate><enddate>20200309</enddate><creator>Ciesielski, Peter N</creator><creator>Pecha, M. Brennan</creator><creator>Lattanzi, Aaron M</creator><creator>Bharadwaj, Vivek S</creator><creator>Crowley, Meagan F</creator><creator>Bu, Lintao</creator><creator>Vermaas, Josh V</creator><creator>Steirer, K. Xerxes</creator><creator>Crowley, Michael F</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5851-9807</orcidid><orcidid>https://orcid.org/0000-0001-5163-9398</orcidid><orcidid>https://orcid.org/0000-0003-3360-9210</orcidid><orcidid>https://orcid.org/0000-0003-3139-6469</orcidid><orcidid>https://orcid.org/0000000333609210</orcidid><orcidid>https://orcid.org/0000000208948504</orcidid><orcidid>https://orcid.org/0000000331396469</orcidid><orcidid>https://orcid.org/0000000158519807</orcidid></search><sort><creationdate>20200309</creationdate><title>Advances in Multiscale Modeling of Lignocellulosic Biomass</title><author>Ciesielski, Peter N ; Pecha, M. Brennan ; Lattanzi, Aaron M ; Bharadwaj, Vivek S ; Crowley, Meagan F ; Bu, Lintao ; Vermaas, Josh V ; Steirer, K. Xerxes ; Crowley, Michael F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-dce912f1dfb84a6fabe87770b53d0d788f1361beb14e606615daa4defa66fab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>09 BIOMASS FUELS</topic><topic>bio-based materials</topic><topic>bioenergy</topic><topic>FCICPL</topic><topic>high-performance computing</topic><topic>lignocellulose</topic><topic>multiscale modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciesielski, Peter N</creatorcontrib><creatorcontrib>Pecha, M. Brennan</creatorcontrib><creatorcontrib>Lattanzi, Aaron M</creatorcontrib><creatorcontrib>Bharadwaj, Vivek S</creatorcontrib><creatorcontrib>Crowley, Meagan F</creatorcontrib><creatorcontrib>Bu, Lintao</creatorcontrib><creatorcontrib>Vermaas, Josh V</creatorcontrib><creatorcontrib>Steirer, K. Xerxes</creatorcontrib><creatorcontrib>Crowley, Michael F</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciesielski, Peter N</au><au>Pecha, M. Brennan</au><au>Lattanzi, Aaron M</au><au>Bharadwaj, Vivek S</au><au>Crowley, Meagan F</au><au>Bu, Lintao</au><au>Vermaas, Josh V</au><au>Steirer, K. Xerxes</au><au>Crowley, Michael F</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Advances in Multiscale Modeling of Lignocellulosic Biomass</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2020-03-09</date><risdate>2020</risdate><volume>8</volume><issue>9</issue><spage>3512</spage><epage>3531</epage><pages>3512-3531</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Applications and associated processing technologies of lignocellulosic biomass are becoming increasingly important as we endeavor to meet societal demand for fuels, chemicals, and materials from renewable resources. Meanwhile, the rapidly expanding availability and capabilities of high-performance computing present an unprecedented opportunity to accelerate development of technologies surrounding lignocellulose utilization. In order to realize this potential, suitable modeling frameworks must be constructed that effectively capture the multiscale complexity and tremendous variety exhibited by lignocellulosic materials. In our assessment of previous endeavors toward this goal, several important shortcomings have been identified: (1) the lack of multiscale integration strategies that capture emergent properties and behaviors spanning different length scales and (2) the inability of many modeling approaches to effectively capture the variability and diversity of lignocellulose that arise from both natural and process-induced sources. In this Perspective, we survey previous modeling approaches for lignocellulose and simulation processes involving its chemical and mechanical transformation and suggest opportunities for future development to enhance the utility of computational tools to address barriers to widespread adoption of a renewable bioeconomy.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.9b07415</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5851-9807</orcidid><orcidid>https://orcid.org/0000-0001-5163-9398</orcidid><orcidid>https://orcid.org/0000-0003-3360-9210</orcidid><orcidid>https://orcid.org/0000-0003-3139-6469</orcidid><orcidid>https://orcid.org/0000000333609210</orcidid><orcidid>https://orcid.org/0000000208948504</orcidid><orcidid>https://orcid.org/0000000331396469</orcidid><orcidid>https://orcid.org/0000000158519807</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2020-03, Vol.8 (9), p.3512-3531 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_osti_scitechconnect_1602174 |
source | ACS Publications |
subjects | 09 BIOMASS FUELS bio-based materials bioenergy FCICPL high-performance computing lignocellulose multiscale modeling |
title | Advances in Multiscale Modeling of Lignocellulosic Biomass |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Advances%20in%20Multiscale%20Modeling%20of%20Lignocellulosic%20Biomass&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Ciesielski,%20Peter%20N&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2020-03-09&rft.volume=8&rft.issue=9&rft.spage=3512&rft.epage=3531&rft.pages=3512-3531&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.9b07415&rft_dat=%3Cacs_osti_%3Eb078151395%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |