Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing

The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2020-02, Vol.124 (8), p.080501-080501, Article 080501
Hauptverfasser: Avkhadiev, A, Shanahan, P E, Young, R D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 080501
container_issue 8
container_start_page 080501
container_title Physical review letters
container_volume 124
creator Avkhadiev, A
Shanahan, P E
Young, R D
description The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.
doi_str_mv 10.1103/PhysRevLett.124.080501
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1601727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377337584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5e45f567db327a79f85d922e48e0462794b346ed1159ea8171be17e4654834463</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhL1QRXLhk8diOnRyrFYVKK8pHe7a8zizrKomD7VRa7v3fdUj5ECdL42fe0cxDyBnQNQDl7z4fjvEr3m0xpTUwsaY1rSg8ISugqikVgHhKVpRyKBtK1Ql5EeMtpRSYrJ-TE85AKg5iRe7PrcUOg0lu-F5sTUrOYvFlMkOa-uLCYdcW1wf04VhsTGenLoN-iMWdM8XlkDCMPpd8KK7G5Hr389d3cRPntE_exeNC9dg6k7D8Zk33N37j-3GaB78kz_ami_jq8T0lNxfvrzcfy-3Vh8vN-ba0AkQqKxTVvpKq3XGmjGr2ddU2jKGokQrJVCN2XEhsAaoGTQ0KdggKhaxEzYWQ_JS8XnJ9TE5H6xLag_XDgDZpkBQUUxl6u0Bj8D8mjEn3LuYjdWZAP0XNuFKcq6oWGX3zH3rrpzDkFWZKQCNrNVNyoWzwMQbc6zG43oSjBqpnm_ofmzrb1IvN3Hj2GD_t8gX_tP3Wxx8AUvOeig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374196874</pqid></control><display><type>article</type><title>Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Avkhadiev, A ; Shanahan, P E ; Young, R D</creator><creatorcontrib>Avkhadiev, A ; Shanahan, P E ; Young, R D ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.080501</identifier><identifier>PMID: 32167314</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Field theory ; lattice QCD ; Lattices (mathematics) ; nuclear structure &amp; decays ; Optimization ; Particle physics ; quantum computation ; Quantum computing ; Quantum field theory ; quantum simulation ; Quantum theory ; Standard model (particle physics)</subject><ispartof>Physical review letters, 2020-02, Vol.124 (8), p.080501-080501, Article 080501</ispartof><rights>Copyright American Physical Society Feb 28, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5e45f567db327a79f85d922e48e0462794b346ed1159ea8171be17e4654834463</citedby><cites>FETCH-LOGICAL-c414t-5e45f567db327a79f85d922e48e0462794b346ed1159ea8171be17e4654834463</cites><orcidid>0000-0002-4527-1811 ; 0000-0002-0916-7603 ; 0000000245271811 ; 0000000209167603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32167314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1601727$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Avkhadiev, A</creatorcontrib><creatorcontrib>Shanahan, P E</creatorcontrib><creatorcontrib>Young, R D</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Field theory</subject><subject>lattice QCD</subject><subject>Lattices (mathematics)</subject><subject>nuclear structure &amp; decays</subject><subject>Optimization</subject><subject>Particle physics</subject><subject>quantum computation</subject><subject>Quantum computing</subject><subject>Quantum field theory</subject><subject>quantum simulation</subject><subject>Quantum theory</subject><subject>Standard model (particle physics)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EokvhL1QRXLhk8diOnRyrFYVKK8pHe7a8zizrKomD7VRa7v3fdUj5ECdL42fe0cxDyBnQNQDl7z4fjvEr3m0xpTUwsaY1rSg8ISugqikVgHhKVpRyKBtK1Ql5EeMtpRSYrJ-TE85AKg5iRe7PrcUOg0lu-F5sTUrOYvFlMkOa-uLCYdcW1wf04VhsTGenLoN-iMWdM8XlkDCMPpd8KK7G5Hr389d3cRPntE_exeNC9dg6k7D8Zk33N37j-3GaB78kz_ami_jq8T0lNxfvrzcfy-3Vh8vN-ba0AkQqKxTVvpKq3XGmjGr2ddU2jKGokQrJVCN2XEhsAaoGTQ0KdggKhaxEzYWQ_JS8XnJ9TE5H6xLag_XDgDZpkBQUUxl6u0Bj8D8mjEn3LuYjdWZAP0XNuFKcq6oWGX3zH3rrpzDkFWZKQCNrNVNyoWzwMQbc6zG43oSjBqpnm_ofmzrb1IvN3Hj2GD_t8gX_tP3Wxx8AUvOeig</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Avkhadiev, A</creator><creator>Shanahan, P E</creator><creator>Young, R D</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4527-1811</orcidid><orcidid>https://orcid.org/0000-0002-0916-7603</orcidid><orcidid>https://orcid.org/0000000245271811</orcidid><orcidid>https://orcid.org/0000000209167603</orcidid></search><sort><creationdate>20200228</creationdate><title>Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing</title><author>Avkhadiev, A ; Shanahan, P E ; Young, R D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5e45f567db327a79f85d922e48e0462794b346ed1159ea8171be17e4654834463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Field theory</topic><topic>lattice QCD</topic><topic>Lattices (mathematics)</topic><topic>nuclear structure &amp; decays</topic><topic>Optimization</topic><topic>Particle physics</topic><topic>quantum computation</topic><topic>Quantum computing</topic><topic>Quantum field theory</topic><topic>quantum simulation</topic><topic>Quantum theory</topic><topic>Standard model (particle physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avkhadiev, A</creatorcontrib><creatorcontrib>Shanahan, P E</creatorcontrib><creatorcontrib>Young, R D</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avkhadiev, A</au><au>Shanahan, P E</au><au>Young, R D</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>124</volume><issue>8</issue><spage>080501</spage><epage>080501</epage><pages>080501-080501</pages><artnum>080501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32167314</pmid><doi>10.1103/PhysRevLett.124.080501</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4527-1811</orcidid><orcidid>https://orcid.org/0000-0002-0916-7603</orcidid><orcidid>https://orcid.org/0000000245271811</orcidid><orcidid>https://orcid.org/0000000209167603</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-02, Vol.124 (8), p.080501-080501, Article 080501
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1601727
source American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Field theory
lattice QCD
Lattices (mathematics)
nuclear structure & decays
Optimization
Particle physics
quantum computation
Quantum computing
Quantum field theory
quantum simulation
Quantum theory
Standard model (particle physics)
title Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Lattice%20Quantum%20Field%20Theory%20Calculations%20via%20Interpolator%20Optimization%20Using%20Noisy%20Intermediate-Scale%20Quantum%20Computing&rft.jtitle=Physical%20review%20letters&rft.au=Avkhadiev,%20A&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2020-02-28&rft.volume=124&rft.issue=8&rft.spage=080501&rft.epage=080501&rft.pages=080501-080501&rft.artnum=080501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.080501&rft_dat=%3Cproquest_osti_%3E2377337584%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374196874&rft_id=info:pmid/32167314&rfr_iscdi=true