Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing
The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next ge...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2020-02, Vol.124 (8), p.080501-080501, Article 080501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 080501 |
---|---|
container_issue | 8 |
container_start_page | 080501 |
container_title | Physical review letters |
container_volume | 124 |
creator | Avkhadiev, A Shanahan, P E Young, R D |
description | The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics. |
doi_str_mv | 10.1103/PhysRevLett.124.080501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1601727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2377337584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5e45f567db327a79f85d922e48e0462794b346ed1159ea8171be17e4654834463</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhL1QRXLhk8diOnRyrFYVKK8pHe7a8zizrKomD7VRa7v3fdUj5ECdL42fe0cxDyBnQNQDl7z4fjvEr3m0xpTUwsaY1rSg8ISugqikVgHhKVpRyKBtK1Ql5EeMtpRSYrJ-TE85AKg5iRe7PrcUOg0lu-F5sTUrOYvFlMkOa-uLCYdcW1wf04VhsTGenLoN-iMWdM8XlkDCMPpd8KK7G5Hr389d3cRPntE_exeNC9dg6k7D8Zk33N37j-3GaB78kz_ami_jq8T0lNxfvrzcfy-3Vh8vN-ba0AkQqKxTVvpKq3XGmjGr2ddU2jKGokQrJVCN2XEhsAaoGTQ0KdggKhaxEzYWQ_JS8XnJ9TE5H6xLag_XDgDZpkBQUUxl6u0Bj8D8mjEn3LuYjdWZAP0XNuFKcq6oWGX3zH3rrpzDkFWZKQCNrNVNyoWzwMQbc6zG43oSjBqpnm_ofmzrb1IvN3Hj2GD_t8gX_tP3Wxx8AUvOeig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374196874</pqid></control><display><type>article</type><title>Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Avkhadiev, A ; Shanahan, P E ; Young, R D</creator><creatorcontrib>Avkhadiev, A ; Shanahan, P E ; Young, R D ; Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><description>The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.080501</identifier><identifier>PMID: 32167314</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Field theory ; lattice QCD ; Lattices (mathematics) ; nuclear structure & decays ; Optimization ; Particle physics ; quantum computation ; Quantum computing ; Quantum field theory ; quantum simulation ; Quantum theory ; Standard model (particle physics)</subject><ispartof>Physical review letters, 2020-02, Vol.124 (8), p.080501-080501, Article 080501</ispartof><rights>Copyright American Physical Society Feb 28, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5e45f567db327a79f85d922e48e0462794b346ed1159ea8171be17e4654834463</citedby><cites>FETCH-LOGICAL-c414t-5e45f567db327a79f85d922e48e0462794b346ed1159ea8171be17e4654834463</cites><orcidid>0000-0002-4527-1811 ; 0000-0002-0916-7603 ; 0000000245271811 ; 0000000209167603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32167314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1601727$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Avkhadiev, A</creatorcontrib><creatorcontrib>Shanahan, P E</creatorcontrib><creatorcontrib>Young, R D</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><title>Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Field theory</subject><subject>lattice QCD</subject><subject>Lattices (mathematics)</subject><subject>nuclear structure & decays</subject><subject>Optimization</subject><subject>Particle physics</subject><subject>quantum computation</subject><subject>Quantum computing</subject><subject>Quantum field theory</subject><subject>quantum simulation</subject><subject>Quantum theory</subject><subject>Standard model (particle physics)</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EokvhL1QRXLhk8diOnRyrFYVKK8pHe7a8zizrKomD7VRa7v3fdUj5ECdL42fe0cxDyBnQNQDl7z4fjvEr3m0xpTUwsaY1rSg8ISugqikVgHhKVpRyKBtK1Ql5EeMtpRSYrJ-TE85AKg5iRe7PrcUOg0lu-F5sTUrOYvFlMkOa-uLCYdcW1wf04VhsTGenLoN-iMWdM8XlkDCMPpd8KK7G5Hr389d3cRPntE_exeNC9dg6k7D8Zk33N37j-3GaB78kz_ami_jq8T0lNxfvrzcfy-3Vh8vN-ba0AkQqKxTVvpKq3XGmjGr2ddU2jKGokQrJVCN2XEhsAaoGTQ0KdggKhaxEzYWQ_JS8XnJ9TE5H6xLag_XDgDZpkBQUUxl6u0Bj8D8mjEn3LuYjdWZAP0XNuFKcq6oWGX3zH3rrpzDkFWZKQCNrNVNyoWzwMQbc6zG43oSjBqpnm_ofmzrb1IvN3Hj2GD_t8gX_tP3Wxx8AUvOeig</recordid><startdate>20200228</startdate><enddate>20200228</enddate><creator>Avkhadiev, A</creator><creator>Shanahan, P E</creator><creator>Young, R D</creator><general>American Physical Society</general><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4527-1811</orcidid><orcidid>https://orcid.org/0000-0002-0916-7603</orcidid><orcidid>https://orcid.org/0000000245271811</orcidid><orcidid>https://orcid.org/0000000209167603</orcidid></search><sort><creationdate>20200228</creationdate><title>Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing</title><author>Avkhadiev, A ; Shanahan, P E ; Young, R D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5e45f567db327a79f85d922e48e0462794b346ed1159ea8171be17e4654834463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Field theory</topic><topic>lattice QCD</topic><topic>Lattices (mathematics)</topic><topic>nuclear structure & decays</topic><topic>Optimization</topic><topic>Particle physics</topic><topic>quantum computation</topic><topic>Quantum computing</topic><topic>Quantum field theory</topic><topic>quantum simulation</topic><topic>Quantum theory</topic><topic>Standard model (particle physics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avkhadiev, A</creatorcontrib><creatorcontrib>Shanahan, P E</creatorcontrib><creatorcontrib>Young, R D</creatorcontrib><creatorcontrib>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avkhadiev, A</au><au>Shanahan, P E</au><au>Young, R D</au><aucorp>Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-02-28</date><risdate>2020</risdate><volume>124</volume><issue>8</issue><spage>080501</spage><epage>080501</epage><pages>080501-080501</pages><artnum>080501</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The only known way to study quantum field theories in nonperturbative regimes is using numerical calculations regulated on discrete space-time lattices. Such computations, however, are often faced with exponential signal-to-noise challenges that render key physics studies untenable even with next generation classical computing. Here, a method is presented by which the output of small-scale quantum computations on noisy intermediate-scale quantum era hardware can be used to accelerate larger-scale classical field theory calculations through the construction of optimized interpolating operators. The method is implemented and studied in the context of the 1+1-dimensional Schwinger model, a simple field theory which shares key features with the standard model of nuclear and particle physics.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32167314</pmid><doi>10.1103/PhysRevLett.124.080501</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4527-1811</orcidid><orcidid>https://orcid.org/0000-0002-0916-7603</orcidid><orcidid>https://orcid.org/0000000245271811</orcidid><orcidid>https://orcid.org/0000000209167603</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2020-02, Vol.124 (8), p.080501-080501, Article 080501 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1601727 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Field theory lattice QCD Lattices (mathematics) nuclear structure & decays Optimization Particle physics quantum computation Quantum computing Quantum field theory quantum simulation Quantum theory Standard model (particle physics) |
title | Accelerating Lattice Quantum Field Theory Calculations via Interpolator Optimization Using Noisy Intermediate-Scale Quantum Computing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T01%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accelerating%20Lattice%20Quantum%20Field%20Theory%20Calculations%20via%20Interpolator%20Optimization%20Using%20Noisy%20Intermediate-Scale%20Quantum%20Computing&rft.jtitle=Physical%20review%20letters&rft.au=Avkhadiev,%20A&rft.aucorp=Massachusetts%20Inst.%20of%20Technology%20(MIT),%20Cambridge,%20MA%20(United%20States)&rft.date=2020-02-28&rft.volume=124&rft.issue=8&rft.spage=080501&rft.epage=080501&rft.pages=080501-080501&rft.artnum=080501&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.080501&rft_dat=%3Cproquest_osti_%3E2377337584%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374196874&rft_id=info:pmid/32167314&rfr_iscdi=true |