Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing

Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2018-05, Vol.61 (5), p.521-541
Hauptverfasser: Yan, Wentao, Lin, Stephen, Kafka, Orion L., Lian, Yanping, Yu, Cheng, Liu, Zeliang, Yan, Jinhui, Wolff, Sarah, Wu, Hao, Ndip-Agbor, Ebot, Mozaffar, Mojtaba, Ehmann, Kornel, Cao, Jian, Wagner, Gregory J., Liu, Wing Kam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 541
container_issue 5
container_start_page 521
container_title Computational mechanics
container_volume 61
creator Yan, Wentao
Lin, Stephen
Kafka, Orion L.
Lian, Yanping
Yu, Cheng
Liu, Zeliang
Yan, Jinhui
Wolff, Sarah
Wu, Hao
Ndip-Agbor, Ebot
Mozaffar, Mojtaba
Ehmann, Kornel
Cao, Jian
Wagner, Gregory J.
Liu, Wing Kam
description Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.
doi_str_mv 10.1007/s00466-018-1539-z
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1600836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A538907869</galeid><sourcerecordid>A538907869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-23a98f381f004ba8ce14cd32a932fc8d4da749b4ca9237b8415bdb371d4f6de83</originalsourceid><addsrcrecordid>eNp1kc2K1TAUgIsoeB19AHdFVy4yJk3apMth_BsYEPxZhzQ5uTdDb1NzUvHOQnwH39AnMaUDMgvJIofD9x3OT1U9Z_ScUSpfI6Wi6whlirCW9-T2QbVjgjeE9o14WO0ok4rITraPqyeIN5SyVvF2V_18Y7IhLoXvMNXHZcyBoDUj3MXz4YTBYn2MDkasc6wdrGw9p2gB8c-v35jTYvOSoMQlO0PKpzrBaHKIEx7CjLWPqTbOhbyaRzMt3qxGmPZPq0fejAjP7v6z6uu7t18uP5Drj--vLi-uiRWsy6ThpleeK-bLmINRFpiwjjem5423yglnpOgHYU3fcDkowdrBDVwyJ3znQPGz6sVWN2IOGm3IYA82ThPYrFlHqeJdgV5uUBnj2wKY9U1c0lT60g3lPReyYbJQ5xu1L2vSYfIxJ2PLc3AMpST4UPIXLVc9larri_DqnlCYDD_y3iyI-urzp_ss21ibImICr-cUjiadNKN6PbTeDq3LofV6aH1bnGZzcF5XCulf2_-X_gIOOLAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039347217</pqid></control><display><type>article</type><title>Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Wentao ; Lin, Stephen ; Kafka, Orion L. ; Lian, Yanping ; Yu, Cheng ; Liu, Zeliang ; Yan, Jinhui ; Wolff, Sarah ; Wu, Hao ; Ndip-Agbor, Ebot ; Mozaffar, Mojtaba ; Ehmann, Kornel ; Cao, Jian ; Wagner, Gregory J. ; Liu, Wing Kam</creator><creatorcontrib>Yan, Wentao ; Lin, Stephen ; Kafka, Orion L. ; Lian, Yanping ; Yu, Cheng ; Liu, Zeliang ; Yan, Jinhui ; Wolff, Sarah ; Wu, Hao ; Ndip-Agbor, Ebot ; Mozaffar, Mojtaba ; Ehmann, Kornel ; Cao, Jian ; Wagner, Gregory J. ; Liu, Wing Kam ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-018-1539-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3D printing ; Additive manufacturing ; Classical and Continuum Physics ; Computational Science and Engineering ; Data mining ; Design optimization ; Engineering ; Mathematical models ; Original Paper ; Theoretical and Applied Mechanics ; Tooling</subject><ispartof>Computational mechanics, 2018-05, Vol.61 (5), p.521-541</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-23a98f381f004ba8ce14cd32a932fc8d4da749b4ca9237b8415bdb371d4f6de83</citedby><cites>FETCH-LOGICAL-c416t-23a98f381f004ba8ce14cd32a932fc8d4da749b4ca9237b8415bdb371d4f6de83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-018-1539-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-018-1539-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1600836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Wentao</creatorcontrib><creatorcontrib>Lin, Stephen</creatorcontrib><creatorcontrib>Kafka, Orion L.</creatorcontrib><creatorcontrib>Lian, Yanping</creatorcontrib><creatorcontrib>Yu, Cheng</creatorcontrib><creatorcontrib>Liu, Zeliang</creatorcontrib><creatorcontrib>Yan, Jinhui</creatorcontrib><creatorcontrib>Wolff, Sarah</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Ndip-Agbor, Ebot</creatorcontrib><creatorcontrib>Mozaffar, Mojtaba</creatorcontrib><creatorcontrib>Ehmann, Kornel</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wagner, Gregory J.</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Data mining</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tooling</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc2K1TAUgIsoeB19AHdFVy4yJk3apMth_BsYEPxZhzQ5uTdDb1NzUvHOQnwH39AnMaUDMgvJIofD9x3OT1U9Z_ScUSpfI6Wi6whlirCW9-T2QbVjgjeE9o14WO0ok4rITraPqyeIN5SyVvF2V_18Y7IhLoXvMNXHZcyBoDUj3MXz4YTBYn2MDkasc6wdrGw9p2gB8c-v35jTYvOSoMQlO0PKpzrBaHKIEx7CjLWPqTbOhbyaRzMt3qxGmPZPq0fejAjP7v6z6uu7t18uP5Drj--vLi-uiRWsy6ThpleeK-bLmINRFpiwjjem5423yglnpOgHYU3fcDkowdrBDVwyJ3znQPGz6sVWN2IOGm3IYA82ThPYrFlHqeJdgV5uUBnj2wKY9U1c0lT60g3lPReyYbJQ5xu1L2vSYfIxJ2PLc3AMpST4UPIXLVc9larri_DqnlCYDD_y3iyI-urzp_ss21ibImICr-cUjiadNKN6PbTeDq3LofV6aH1bnGZzcF5XCulf2_-X_gIOOLAM</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Yan, Wentao</creator><creator>Lin, Stephen</creator><creator>Kafka, Orion L.</creator><creator>Lian, Yanping</creator><creator>Yu, Cheng</creator><creator>Liu, Zeliang</creator><creator>Yan, Jinhui</creator><creator>Wolff, Sarah</creator><creator>Wu, Hao</creator><creator>Ndip-Agbor, Ebot</creator><creator>Mozaffar, Mojtaba</creator><creator>Ehmann, Kornel</creator><creator>Cao, Jian</creator><creator>Wagner, Gregory J.</creator><creator>Liu, Wing Kam</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180501</creationdate><title>Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing</title><author>Yan, Wentao ; Lin, Stephen ; Kafka, Orion L. ; Lian, Yanping ; Yu, Cheng ; Liu, Zeliang ; Yan, Jinhui ; Wolff, Sarah ; Wu, Hao ; Ndip-Agbor, Ebot ; Mozaffar, Mojtaba ; Ehmann, Kornel ; Cao, Jian ; Wagner, Gregory J. ; Liu, Wing Kam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-23a98f381f004ba8ce14cd32a932fc8d4da749b4ca9237b8415bdb371d4f6de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Data mining</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wentao</creatorcontrib><creatorcontrib>Lin, Stephen</creatorcontrib><creatorcontrib>Kafka, Orion L.</creatorcontrib><creatorcontrib>Lian, Yanping</creatorcontrib><creatorcontrib>Yu, Cheng</creatorcontrib><creatorcontrib>Liu, Zeliang</creatorcontrib><creatorcontrib>Yan, Jinhui</creatorcontrib><creatorcontrib>Wolff, Sarah</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Ndip-Agbor, Ebot</creatorcontrib><creatorcontrib>Mozaffar, Mojtaba</creatorcontrib><creatorcontrib>Ehmann, Kornel</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wagner, Gregory J.</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wentao</au><au>Lin, Stephen</au><au>Kafka, Orion L.</au><au>Lian, Yanping</au><au>Yu, Cheng</au><au>Liu, Zeliang</au><au>Yan, Jinhui</au><au>Wolff, Sarah</au><au>Wu, Hao</au><au>Ndip-Agbor, Ebot</au><au>Mozaffar, Mojtaba</au><au>Ehmann, Kornel</au><au>Cao, Jian</au><au>Wagner, Gregory J.</au><au>Liu, Wing Kam</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>61</volume><issue>5</issue><spage>521</spage><epage>541</epage><pages>521-541</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-018-1539-z</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0178-7675
ispartof Computational mechanics, 2018-05, Vol.61 (5), p.521-541
issn 0178-7675
1432-0924
language eng
recordid cdi_osti_scitechconnect_1600836
source Springer Nature - Complete Springer Journals
subjects 3D printing
Additive manufacturing
Classical and Continuum Physics
Computational Science and Engineering
Data mining
Design optimization
Engineering
Mathematical models
Original Paper
Theoretical and Applied Mechanics
Tooling
title Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20multi-scale%20multi-physics%20models%20to%20derive%20process%E2%80%93structure%E2%80%93property%20relationships%20for%20additive%20manufacturing&rft.jtitle=Computational%20mechanics&rft.au=Yan,%20Wentao&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2018-05-01&rft.volume=61&rft.issue=5&rft.spage=521&rft.epage=541&rft.pages=521-541&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-018-1539-z&rft_dat=%3Cgale_osti_%3EA538907869%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039347217&rft_id=info:pmid/&rft_galeid=A538907869&rfr_iscdi=true