Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing
Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a p...
Gespeichert in:
Veröffentlicht in: | Computational mechanics 2018-05, Vol.61 (5), p.521-541 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 541 |
---|---|
container_issue | 5 |
container_start_page | 521 |
container_title | Computational mechanics |
container_volume | 61 |
creator | Yan, Wentao Lin, Stephen Kafka, Orion L. Lian, Yanping Yu, Cheng Liu, Zeliang Yan, Jinhui Wolff, Sarah Wu, Hao Ndip-Agbor, Ebot Mozaffar, Mojtaba Ehmann, Kornel Cao, Jian Wagner, Gregory J. Liu, Wing Kam |
description | Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing. |
doi_str_mv | 10.1007/s00466-018-1539-z |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1600836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A538907869</galeid><sourcerecordid>A538907869</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-23a98f381f004ba8ce14cd32a932fc8d4da749b4ca9237b8415bdb371d4f6de83</originalsourceid><addsrcrecordid>eNp1kc2K1TAUgIsoeB19AHdFVy4yJk3apMth_BsYEPxZhzQ5uTdDb1NzUvHOQnwH39AnMaUDMgvJIofD9x3OT1U9Z_ScUSpfI6Wi6whlirCW9-T2QbVjgjeE9o14WO0ok4rITraPqyeIN5SyVvF2V_18Y7IhLoXvMNXHZcyBoDUj3MXz4YTBYn2MDkasc6wdrGw9p2gB8c-v35jTYvOSoMQlO0PKpzrBaHKIEx7CjLWPqTbOhbyaRzMt3qxGmPZPq0fejAjP7v6z6uu7t18uP5Drj--vLi-uiRWsy6ThpleeK-bLmINRFpiwjjem5423yglnpOgHYU3fcDkowdrBDVwyJ3znQPGz6sVWN2IOGm3IYA82ThPYrFlHqeJdgV5uUBnj2wKY9U1c0lT60g3lPReyYbJQ5xu1L2vSYfIxJ2PLc3AMpST4UPIXLVc9larri_DqnlCYDD_y3iyI-urzp_ss21ibImICr-cUjiadNKN6PbTeDq3LofV6aH1bnGZzcF5XCulf2_-X_gIOOLAM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039347217</pqid></control><display><type>article</type><title>Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing</title><source>Springer Nature - Complete Springer Journals</source><creator>Yan, Wentao ; Lin, Stephen ; Kafka, Orion L. ; Lian, Yanping ; Yu, Cheng ; Liu, Zeliang ; Yan, Jinhui ; Wolff, Sarah ; Wu, Hao ; Ndip-Agbor, Ebot ; Mozaffar, Mojtaba ; Ehmann, Kornel ; Cao, Jian ; Wagner, Gregory J. ; Liu, Wing Kam</creator><creatorcontrib>Yan, Wentao ; Lin, Stephen ; Kafka, Orion L. ; Lian, Yanping ; Yu, Cheng ; Liu, Zeliang ; Yan, Jinhui ; Wolff, Sarah ; Wu, Hao ; Ndip-Agbor, Ebot ; Mozaffar, Mojtaba ; Ehmann, Kornel ; Cao, Jian ; Wagner, Gregory J. ; Liu, Wing Kam ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.</description><identifier>ISSN: 0178-7675</identifier><identifier>EISSN: 1432-0924</identifier><identifier>DOI: 10.1007/s00466-018-1539-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>3D printing ; Additive manufacturing ; Classical and Continuum Physics ; Computational Science and Engineering ; Data mining ; Design optimization ; Engineering ; Mathematical models ; Original Paper ; Theoretical and Applied Mechanics ; Tooling</subject><ispartof>Computational mechanics, 2018-05, Vol.61 (5), p.521-541</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-23a98f381f004ba8ce14cd32a932fc8d4da749b4ca9237b8415bdb371d4f6de83</citedby><cites>FETCH-LOGICAL-c416t-23a98f381f004ba8ce14cd32a932fc8d4da749b4ca9237b8415bdb371d4f6de83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00466-018-1539-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00466-018-1539-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1600836$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Wentao</creatorcontrib><creatorcontrib>Lin, Stephen</creatorcontrib><creatorcontrib>Kafka, Orion L.</creatorcontrib><creatorcontrib>Lian, Yanping</creatorcontrib><creatorcontrib>Yu, Cheng</creatorcontrib><creatorcontrib>Liu, Zeliang</creatorcontrib><creatorcontrib>Yan, Jinhui</creatorcontrib><creatorcontrib>Wolff, Sarah</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Ndip-Agbor, Ebot</creatorcontrib><creatorcontrib>Mozaffar, Mojtaba</creatorcontrib><creatorcontrib>Ehmann, Kornel</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wagner, Gregory J.</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing</title><title>Computational mechanics</title><addtitle>Comput Mech</addtitle><description>Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.</description><subject>3D printing</subject><subject>Additive manufacturing</subject><subject>Classical and Continuum Physics</subject><subject>Computational Science and Engineering</subject><subject>Data mining</subject><subject>Design optimization</subject><subject>Engineering</subject><subject>Mathematical models</subject><subject>Original Paper</subject><subject>Theoretical and Applied Mechanics</subject><subject>Tooling</subject><issn>0178-7675</issn><issn>1432-0924</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kc2K1TAUgIsoeB19AHdFVy4yJk3apMth_BsYEPxZhzQ5uTdDb1NzUvHOQnwH39AnMaUDMgvJIofD9x3OT1U9Z_ScUSpfI6Wi6whlirCW9-T2QbVjgjeE9o14WO0ok4rITraPqyeIN5SyVvF2V_18Y7IhLoXvMNXHZcyBoDUj3MXz4YTBYn2MDkasc6wdrGw9p2gB8c-v35jTYvOSoMQlO0PKpzrBaHKIEx7CjLWPqTbOhbyaRzMt3qxGmPZPq0fejAjP7v6z6uu7t18uP5Drj--vLi-uiRWsy6ThpleeK-bLmINRFpiwjjem5423yglnpOgHYU3fcDkowdrBDVwyJ3znQPGz6sVWN2IOGm3IYA82ThPYrFlHqeJdgV5uUBnj2wKY9U1c0lT60g3lPReyYbJQ5xu1L2vSYfIxJ2PLc3AMpST4UPIXLVc9larri_DqnlCYDD_y3iyI-urzp_ss21ibImICr-cUjiadNKN6PbTeDq3LofV6aH1bnGZzcF5XCulf2_-X_gIOOLAM</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Yan, Wentao</creator><creator>Lin, Stephen</creator><creator>Kafka, Orion L.</creator><creator>Lian, Yanping</creator><creator>Yu, Cheng</creator><creator>Liu, Zeliang</creator><creator>Yan, Jinhui</creator><creator>Wolff, Sarah</creator><creator>Wu, Hao</creator><creator>Ndip-Agbor, Ebot</creator><creator>Mozaffar, Mojtaba</creator><creator>Ehmann, Kornel</creator><creator>Cao, Jian</creator><creator>Wagner, Gregory J.</creator><creator>Liu, Wing Kam</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180501</creationdate><title>Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing</title><author>Yan, Wentao ; Lin, Stephen ; Kafka, Orion L. ; Lian, Yanping ; Yu, Cheng ; Liu, Zeliang ; Yan, Jinhui ; Wolff, Sarah ; Wu, Hao ; Ndip-Agbor, Ebot ; Mozaffar, Mojtaba ; Ehmann, Kornel ; Cao, Jian ; Wagner, Gregory J. ; Liu, Wing Kam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-23a98f381f004ba8ce14cd32a932fc8d4da749b4ca9237b8415bdb371d4f6de83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Additive manufacturing</topic><topic>Classical and Continuum Physics</topic><topic>Computational Science and Engineering</topic><topic>Data mining</topic><topic>Design optimization</topic><topic>Engineering</topic><topic>Mathematical models</topic><topic>Original Paper</topic><topic>Theoretical and Applied Mechanics</topic><topic>Tooling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Wentao</creatorcontrib><creatorcontrib>Lin, Stephen</creatorcontrib><creatorcontrib>Kafka, Orion L.</creatorcontrib><creatorcontrib>Lian, Yanping</creatorcontrib><creatorcontrib>Yu, Cheng</creatorcontrib><creatorcontrib>Liu, Zeliang</creatorcontrib><creatorcontrib>Yan, Jinhui</creatorcontrib><creatorcontrib>Wolff, Sarah</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Ndip-Agbor, Ebot</creatorcontrib><creatorcontrib>Mozaffar, Mojtaba</creatorcontrib><creatorcontrib>Ehmann, Kornel</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Wagner, Gregory J.</creatorcontrib><creatorcontrib>Liu, Wing Kam</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>Computational mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Wentao</au><au>Lin, Stephen</au><au>Kafka, Orion L.</au><au>Lian, Yanping</au><au>Yu, Cheng</au><au>Liu, Zeliang</au><au>Yan, Jinhui</au><au>Wolff, Sarah</au><au>Wu, Hao</au><au>Ndip-Agbor, Ebot</au><au>Mozaffar, Mojtaba</au><au>Ehmann, Kornel</au><au>Cao, Jian</au><au>Wagner, Gregory J.</au><au>Liu, Wing Kam</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing</atitle><jtitle>Computational mechanics</jtitle><stitle>Comput Mech</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>61</volume><issue>5</issue><spage>521</spage><epage>541</epage><pages>521-541</pages><issn>0178-7675</issn><eissn>1432-0924</eissn><abstract>Additive manufacturing (AM) possesses appealing potential for manipulating material compositions, structures and properties in end-use products with arbitrary shapes without the need for specialized tooling. Since the physical process is difficult to experimentally measure, numerical modeling is a powerful tool to understand the underlying physical mechanisms. This paper presents our latest work in this regard based on comprehensive material modeling of process–structure–property relationships for AM materials. The numerous influencing factors that emerge from the AM process motivate the need for novel rapid design and optimization approaches. For this, we propose data-mining as an effective solution. Such methods—used in the process–structure, structure–properties and the design phase that connects them—would allow for a design loop for AM processing and materials. We hope this article will provide a road map to enable AM fundamental understanding for the monitoring and advanced diagnostics of AM processing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00466-018-1539-z</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0178-7675 |
ispartof | Computational mechanics, 2018-05, Vol.61 (5), p.521-541 |
issn | 0178-7675 1432-0924 |
language | eng |
recordid | cdi_osti_scitechconnect_1600836 |
source | Springer Nature - Complete Springer Journals |
subjects | 3D printing Additive manufacturing Classical and Continuum Physics Computational Science and Engineering Data mining Design optimization Engineering Mathematical models Original Paper Theoretical and Applied Mechanics Tooling |
title | Data-driven multi-scale multi-physics models to derive process–structure–property relationships for additive manufacturing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20multi-scale%20multi-physics%20models%20to%20derive%20process%E2%80%93structure%E2%80%93property%20relationships%20for%20additive%20manufacturing&rft.jtitle=Computational%20mechanics&rft.au=Yan,%20Wentao&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2018-05-01&rft.volume=61&rft.issue=5&rft.spage=521&rft.epage=541&rft.pages=521-541&rft.issn=0178-7675&rft.eissn=1432-0924&rft_id=info:doi/10.1007/s00466-018-1539-z&rft_dat=%3Cgale_osti_%3EA538907869%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039347217&rft_id=info:pmid/&rft_galeid=A538907869&rfr_iscdi=true |