What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging

Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2020-03, Vol.28 (5), p.5898-5918
Hauptverfasser: Lane, Thomas J, Ratner, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5918
container_issue 5
container_start_page 5898
container_title Optics express
container_volume 28
creator Lane, Thomas J
Ratner, Daniel
description Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.
doi_str_mv 10.1364/OE.379503
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1600563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384842254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-7661193cd5b6df4f4e7c6ee9052fcceec5f6caac870fca131b822d9ad2cc19463</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK0e_AOyeNJDdDe72SQnkVI_oNKLxeOyncwmkTSpu1tp_72RtuJpZuDh5Z2HkEvO7rhQ8n42uRNpnjBxRIac5TKSLEuP_-0Dcub9J2Ncpnl6SgYijuMkS_iQzD8qE6hxSEOF1BTfpg2mRE87S8uq84HWS1PWbflA39ZNqFcNbvqL2s7RTeTMlpq2oNggBNe1B_icnFjTeLzYzxGZP03exy_RdPb8On6cRiATEaJUKc5zAUWyUIWVVmIKCjFnSWwBECGxCoyBLGUWDBd8kcVxkZsiBuC5VGJErne5fdFae6gDQgVd2_Z1NFeMJUr00M0OWrnua40-6GXtAZvGtNitvY5FJjPZC5E9ertDwXXeO7R65fqX3FZzpn9V69lE71T37NU-dr1YYvFHHtyKH-raeNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384842254</pqid></control><display><type>article</type><title>What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lane, Thomas J ; Ratner, Daniel</creator><creatorcontrib>Lane, Thomas J ; Ratner, Daniel ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.379503</identifier><identifier>PMID: 32225851</identifier><language>eng</language><publisher>United States: Optical Society of America (OSA)</publisher><subject>OTHER INSTRUMENTATION</subject><ispartof>Optics express, 2020-03, Vol.28 (5), p.5898-5918</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-7661193cd5b6df4f4e7c6ee9052fcceec5f6caac870fca131b822d9ad2cc19463</citedby><cites>FETCH-LOGICAL-c453t-7661193cd5b6df4f4e7c6ee9052fcceec5f6caac870fca131b822d9ad2cc19463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32225851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1600563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lane, Thomas J</creatorcontrib><creatorcontrib>Ratner, Daniel</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.</description><subject>OTHER INSTRUMENTATION</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRbK0e_AOyeNJDdDe72SQnkVI_oNKLxeOyncwmkTSpu1tp_72RtuJpZuDh5Z2HkEvO7rhQ8n42uRNpnjBxRIac5TKSLEuP_-0Dcub9J2Ncpnl6SgYijuMkS_iQzD8qE6hxSEOF1BTfpg2mRE87S8uq84HWS1PWbflA39ZNqFcNbvqL2s7RTeTMlpq2oNggBNe1B_icnFjTeLzYzxGZP03exy_RdPb8On6cRiATEaJUKc5zAUWyUIWVVmIKCjFnSWwBECGxCoyBLGUWDBd8kcVxkZsiBuC5VGJErne5fdFae6gDQgVd2_Z1NFeMJUr00M0OWrnua40-6GXtAZvGtNitvY5FJjPZC5E9ertDwXXeO7R65fqX3FZzpn9V69lE71T37NU-dr1YYvFHHtyKH-raeNA</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Lane, Thomas J</creator><creator>Ratner, Daniel</creator><general>Optical Society of America (OSA)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20200302</creationdate><title>What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging</title><author>Lane, Thomas J ; Ratner, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-7661193cd5b6df4f4e7c6ee9052fcceec5f6caac870fca131b822d9ad2cc19463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>OTHER INSTRUMENTATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lane, Thomas J</creatorcontrib><creatorcontrib>Ratner, Daniel</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lane, Thomas J</au><au>Ratner, Daniel</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>28</volume><issue>5</issue><spage>5898</spage><epage>5918</epage><pages>5898-5918</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.</abstract><cop>United States</cop><pub>Optical Society of America (OSA)</pub><pmid>32225851</pmid><doi>10.1364/OE.379503</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2020-03, Vol.28 (5), p.5898-5918
issn 1094-4087
1094-4087
language eng
recordid cdi_osti_scitechconnect_1600563
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects OTHER INSTRUMENTATION
title What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20are%20the%20advantages%20of%20ghost%20imaging?%20Multiplexing%20for%20x-ray%20and%20electron%20imaging&rft.jtitle=Optics%20express&rft.au=Lane,%20Thomas%20J&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-03-02&rft.volume=28&rft.issue=5&rft.spage=5898&rft.epage=5918&rft.pages=5898-5918&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.379503&rft_dat=%3Cproquest_osti_%3E2384842254%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384842254&rft_id=info:pmid/32225851&rfr_iscdi=true