What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging
Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual...
Gespeichert in:
Veröffentlicht in: | Optics express 2020-03, Vol.28 (5), p.5898-5918 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5918 |
---|---|
container_issue | 5 |
container_start_page | 5898 |
container_title | Optics express |
container_volume | 28 |
creator | Lane, Thomas J Ratner, Daniel |
description | Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement. |
doi_str_mv | 10.1364/OE.379503 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1600563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384842254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-7661193cd5b6df4f4e7c6ee9052fcceec5f6caac870fca131b822d9ad2cc19463</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK0e_AOyeNJDdDe72SQnkVI_oNKLxeOyncwmkTSpu1tp_72RtuJpZuDh5Z2HkEvO7rhQ8n42uRNpnjBxRIac5TKSLEuP_-0Dcub9J2Ncpnl6SgYijuMkS_iQzD8qE6hxSEOF1BTfpg2mRE87S8uq84HWS1PWbflA39ZNqFcNbvqL2s7RTeTMlpq2oNggBNe1B_icnFjTeLzYzxGZP03exy_RdPb8On6cRiATEaJUKc5zAUWyUIWVVmIKCjFnSWwBECGxCoyBLGUWDBd8kcVxkZsiBuC5VGJErne5fdFae6gDQgVd2_Z1NFeMJUr00M0OWrnua40-6GXtAZvGtNitvY5FJjPZC5E9ertDwXXeO7R65fqX3FZzpn9V69lE71T37NU-dr1YYvFHHtyKH-raeNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384842254</pqid></control><display><type>article</type><title>What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Lane, Thomas J ; Ratner, Daniel</creator><creatorcontrib>Lane, Thomas J ; Ratner, Daniel ; SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><description>Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.379503</identifier><identifier>PMID: 32225851</identifier><language>eng</language><publisher>United States: Optical Society of America (OSA)</publisher><subject>OTHER INSTRUMENTATION</subject><ispartof>Optics express, 2020-03, Vol.28 (5), p.5898-5918</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-7661193cd5b6df4f4e7c6ee9052fcceec5f6caac870fca131b822d9ad2cc19463</citedby><cites>FETCH-LOGICAL-c453t-7661193cd5b6df4f4e7c6ee9052fcceec5f6caac870fca131b822d9ad2cc19463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,864,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32225851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1600563$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lane, Thomas J</creatorcontrib><creatorcontrib>Ratner, Daniel</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><title>What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.</description><subject>OTHER INSTRUMENTATION</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AQhhdRbK0e_AOyeNJDdDe72SQnkVI_oNKLxeOyncwmkTSpu1tp_72RtuJpZuDh5Z2HkEvO7rhQ8n42uRNpnjBxRIac5TKSLEuP_-0Dcub9J2Ncpnl6SgYijuMkS_iQzD8qE6hxSEOF1BTfpg2mRE87S8uq84HWS1PWbflA39ZNqFcNbvqL2s7RTeTMlpq2oNggBNe1B_icnFjTeLzYzxGZP03exy_RdPb8On6cRiATEaJUKc5zAUWyUIWVVmIKCjFnSWwBECGxCoyBLGUWDBd8kcVxkZsiBuC5VGJErne5fdFae6gDQgVd2_Z1NFeMJUr00M0OWrnua40-6GXtAZvGtNitvY5FJjPZC5E9ertDwXXeO7R65fqX3FZzpn9V69lE71T37NU-dr1YYvFHHtyKH-raeNA</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Lane, Thomas J</creator><creator>Ratner, Daniel</creator><general>Optical Society of America (OSA)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20200302</creationdate><title>What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging</title><author>Lane, Thomas J ; Ratner, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-7661193cd5b6df4f4e7c6ee9052fcceec5f6caac870fca131b822d9ad2cc19463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>OTHER INSTRUMENTATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lane, Thomas J</creatorcontrib><creatorcontrib>Ratner, Daniel</creatorcontrib><creatorcontrib>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lane, Thomas J</au><au>Ratner, Daniel</au><aucorp>SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2020-03-02</date><risdate>2020</risdate><volume>28</volume><issue>5</issue><spage>5898</spage><epage>5918</epage><pages>5898-5918</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Ghost imaging, Fourier transform spectroscopy, and the newly developed Hadamard transform crystallography are all examples of multiplexing measurement strategies. Multiplexed experiments are performed by measuring multiple points in space, time, or energy simultaneously. This contrasts to the usual method of systematically scanning single points. How do multiplexed measurements work and when they are advantageous? Here we address these questions with a focus on applications involving x-rays or electrons. We present a quantitative framework for analyzing the expected error and radiation dose of different measurement scheme that enables comparison. We conclude that in very specific situations, multiplexing can offer improvements in resolution and signal-to-noise. If the signal has a sparse representation, these advantages become more general and dramatic, and further less radiation can be used to complete a measurement.</abstract><cop>United States</cop><pub>Optical Society of America (OSA)</pub><pmid>32225851</pmid><doi>10.1364/OE.379503</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2020-03, Vol.28 (5), p.5898-5918 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_osti_scitechconnect_1600563 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | OTHER INSTRUMENTATION |
title | What are the advantages of ghost imaging? Multiplexing for x-ray and electron imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20are%20the%20advantages%20of%20ghost%20imaging?%20Multiplexing%20for%20x-ray%20and%20electron%20imaging&rft.jtitle=Optics%20express&rft.au=Lane,%20Thomas%20J&rft.aucorp=SLAC%20National%20Accelerator%20Laboratory%20(SLAC),%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2020-03-02&rft.volume=28&rft.issue=5&rft.spage=5898&rft.epage=5918&rft.pages=5898-5918&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.379503&rft_dat=%3Cproquest_osti_%3E2384842254%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2384842254&rft_id=info:pmid/32225851&rfr_iscdi=true |