Moment preserving constrained resampling with applications to particle-in-cell methods

•A Moment Preserving Constrained Resampling (MPCR) algorithm is developed for particle-in-cell (PIC) simulations of plasmas.•MPCR algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy.•Applying MPCR to PIC simulations increases the accuracy, reduces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2020-05, Vol.409 (C), p.109317, Article 109317
Hauptverfasser: Faghihi, D., Carey, V., Michoski, C., Hager, R., Janhunen, S., Chang, C.S., Moser, R.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 109317
container_title Journal of computational physics
container_volume 409
creator Faghihi, D.
Carey, V.
Michoski, C.
Hager, R.
Janhunen, S.
Chang, C.S.
Moser, R.D.
description •A Moment Preserving Constrained Resampling (MPCR) algorithm is developed for particle-in-cell (PIC) simulations of plasmas.•MPCR algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy.•Applying MPCR to PIC simulations increases the accuracy, reduces the compute cost, and prevents the numerical instabilities.•The effectiveness of MPCR is demonstrated with several numerical tests, including gyrokinetic fusion plasma simulations. The Moment Preserving Constrained Resampling (MPCR) algorithm for particle resampling is introduced and applied to particle-in-cell (PIC) methods to increase simulation accuracy, reduce compute cost, and/or avoid numerical instabilities. The general algorithm partitions the system space into smaller subsets and resamples the distribution within each subset. Further, the algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy (i.e. machine accuracy). The effectiveness of MPCR is demonstrated with several numerical tests, including a use-case study in gyrokinetic fusion plasma simulations. The computational cost of MPCR is negligible compared to the cost of particle evolution in PIC methods, and the tests demonstrate that periodic particle resampling yields a significant improvement in the accuracy and stability of the results.
doi_str_mv 10.1016/j.jcp.2020.109317
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1600081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999120300917</els_id><sourcerecordid>2441886182</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-f2fc9d1b20399448c3496c55191d67a58651a9775e7a99aa9750141dcee26bb63</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwANwiOKd4ncSJxQlV_ElFXICr5Tob6iiJg-0W8fY4CmdO3l19Y80MIZdAV0CB37SrVo8rRtm0iwzKI7KIA01ZCfyYLChlkAoh4JSced9SSqsirxbk48X2OIRkdOjRHczwmWg7-OCUGbBO4lX1Yzedv03YJWqMi1bBRCYJNhmVC0Z3mJoh1dh1SY9hZ2t_Tk4a1Xm8-HuX5P3h_m39lG5eH5_Xd5tUZ6IIacMaLWrYMpoJkeeVznLBdVGAgJqXqqh4AUqUZYGlEkLFsaCQQ60RGd9uebYkV_O_1gcjvTYB9S4GGFAHCXyKCRG6nqHR2a89-iBbu3dD9CVZnkNVcahYpGCmtLPeO2zk6Eyv3I8EKqeOZStjx3LqWM4dR83trMGY8WDQTRZw0FgbNzmorflH_QuF24PX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441886182</pqid></control><display><type>article</type><title>Moment preserving constrained resampling with applications to particle-in-cell methods</title><source>Access via ScienceDirect (Elsevier)</source><creator>Faghihi, D. ; Carey, V. ; Michoski, C. ; Hager, R. ; Janhunen, S. ; Chang, C.S. ; Moser, R.D.</creator><creatorcontrib>Faghihi, D. ; Carey, V. ; Michoski, C. ; Hager, R. ; Janhunen, S. ; Chang, C.S. ; Moser, R.D.</creatorcontrib><description>•A Moment Preserving Constrained Resampling (MPCR) algorithm is developed for particle-in-cell (PIC) simulations of plasmas.•MPCR algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy.•Applying MPCR to PIC simulations increases the accuracy, reduces the compute cost, and prevents the numerical instabilities.•The effectiveness of MPCR is demonstrated with several numerical tests, including gyrokinetic fusion plasma simulations. The Moment Preserving Constrained Resampling (MPCR) algorithm for particle resampling is introduced and applied to particle-in-cell (PIC) methods to increase simulation accuracy, reduce compute cost, and/or avoid numerical instabilities. The general algorithm partitions the system space into smaller subsets and resamples the distribution within each subset. Further, the algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy (i.e. machine accuracy). The effectiveness of MPCR is demonstrated with several numerical tests, including a use-case study in gyrokinetic fusion plasma simulations. The computational cost of MPCR is negligible compared to the cost of particle evolution in PIC methods, and the tests demonstrate that periodic particle resampling yields a significant improvement in the accuracy and stability of the results.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2020.109317</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Accuracy ; Algorithms ; Computational physics ; Computer simulation ; Computing costs ; Constrained optimization ; Distribution function moments ; Particle in cell technique ; Particle resampling ; Particle-in-cell ; Resampling</subject><ispartof>Journal of computational physics, 2020-05, Vol.409 (C), p.109317, Article 109317</ispartof><rights>2020</rights><rights>Copyright Elsevier Science Ltd. May 15, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-f2fc9d1b20399448c3496c55191d67a58651a9775e7a99aa9750141dcee26bb63</citedby><cites>FETCH-LOGICAL-c395t-f2fc9d1b20399448c3496c55191d67a58651a9775e7a99aa9750141dcee26bb63</cites><orcidid>0000-0002-6356-233X ; 000000026356233X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2020.109317$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1600081$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Faghihi, D.</creatorcontrib><creatorcontrib>Carey, V.</creatorcontrib><creatorcontrib>Michoski, C.</creatorcontrib><creatorcontrib>Hager, R.</creatorcontrib><creatorcontrib>Janhunen, S.</creatorcontrib><creatorcontrib>Chang, C.S.</creatorcontrib><creatorcontrib>Moser, R.D.</creatorcontrib><title>Moment preserving constrained resampling with applications to particle-in-cell methods</title><title>Journal of computational physics</title><description>•A Moment Preserving Constrained Resampling (MPCR) algorithm is developed for particle-in-cell (PIC) simulations of plasmas.•MPCR algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy.•Applying MPCR to PIC simulations increases the accuracy, reduces the compute cost, and prevents the numerical instabilities.•The effectiveness of MPCR is demonstrated with several numerical tests, including gyrokinetic fusion plasma simulations. The Moment Preserving Constrained Resampling (MPCR) algorithm for particle resampling is introduced and applied to particle-in-cell (PIC) methods to increase simulation accuracy, reduce compute cost, and/or avoid numerical instabilities. The general algorithm partitions the system space into smaller subsets and resamples the distribution within each subset. Further, the algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy (i.e. machine accuracy). The effectiveness of MPCR is demonstrated with several numerical tests, including a use-case study in gyrokinetic fusion plasma simulations. The computational cost of MPCR is negligible compared to the cost of particle evolution in PIC methods, and the tests demonstrate that periodic particle resampling yields a significant improvement in the accuracy and stability of the results.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Computing costs</subject><subject>Constrained optimization</subject><subject>Distribution function moments</subject><subject>Particle in cell technique</subject><subject>Particle resampling</subject><subject>Particle-in-cell</subject><subject>Resampling</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwANwiOKd4ncSJxQlV_ElFXICr5Tob6iiJg-0W8fY4CmdO3l19Y80MIZdAV0CB37SrVo8rRtm0iwzKI7KIA01ZCfyYLChlkAoh4JSced9SSqsirxbk48X2OIRkdOjRHczwmWg7-OCUGbBO4lX1Yzedv03YJWqMi1bBRCYJNhmVC0Z3mJoh1dh1SY9hZ2t_Tk4a1Xm8-HuX5P3h_m39lG5eH5_Xd5tUZ6IIacMaLWrYMpoJkeeVznLBdVGAgJqXqqh4AUqUZYGlEkLFsaCQQ60RGd9uebYkV_O_1gcjvTYB9S4GGFAHCXyKCRG6nqHR2a89-iBbu3dD9CVZnkNVcahYpGCmtLPeO2zk6Eyv3I8EKqeOZStjx3LqWM4dR83trMGY8WDQTRZw0FgbNzmorflH_QuF24PX</recordid><startdate>20200515</startdate><enddate>20200515</enddate><creator>Faghihi, D.</creator><creator>Carey, V.</creator><creator>Michoski, C.</creator><creator>Hager, R.</creator><creator>Janhunen, S.</creator><creator>Chang, C.S.</creator><creator>Moser, R.D.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6356-233X</orcidid><orcidid>https://orcid.org/000000026356233X</orcidid></search><sort><creationdate>20200515</creationdate><title>Moment preserving constrained resampling with applications to particle-in-cell methods</title><author>Faghihi, D. ; Carey, V. ; Michoski, C. ; Hager, R. ; Janhunen, S. ; Chang, C.S. ; Moser, R.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-f2fc9d1b20399448c3496c55191d67a58651a9775e7a99aa9750141dcee26bb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Computing costs</topic><topic>Constrained optimization</topic><topic>Distribution function moments</topic><topic>Particle in cell technique</topic><topic>Particle resampling</topic><topic>Particle-in-cell</topic><topic>Resampling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Faghihi, D.</creatorcontrib><creatorcontrib>Carey, V.</creatorcontrib><creatorcontrib>Michoski, C.</creatorcontrib><creatorcontrib>Hager, R.</creatorcontrib><creatorcontrib>Janhunen, S.</creatorcontrib><creatorcontrib>Chang, C.S.</creatorcontrib><creatorcontrib>Moser, R.D.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Faghihi, D.</au><au>Carey, V.</au><au>Michoski, C.</au><au>Hager, R.</au><au>Janhunen, S.</au><au>Chang, C.S.</au><au>Moser, R.D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moment preserving constrained resampling with applications to particle-in-cell methods</atitle><jtitle>Journal of computational physics</jtitle><date>2020-05-15</date><risdate>2020</risdate><volume>409</volume><issue>C</issue><spage>109317</spage><pages>109317-</pages><artnum>109317</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>•A Moment Preserving Constrained Resampling (MPCR) algorithm is developed for particle-in-cell (PIC) simulations of plasmas.•MPCR algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy.•Applying MPCR to PIC simulations increases the accuracy, reduces the compute cost, and prevents the numerical instabilities.•The effectiveness of MPCR is demonstrated with several numerical tests, including gyrokinetic fusion plasma simulations. The Moment Preserving Constrained Resampling (MPCR) algorithm for particle resampling is introduced and applied to particle-in-cell (PIC) methods to increase simulation accuracy, reduce compute cost, and/or avoid numerical instabilities. The general algorithm partitions the system space into smaller subsets and resamples the distribution within each subset. Further, the algorithm is designed to conserve any number of particle and grid moments with a high degree of accuracy (i.e. machine accuracy). The effectiveness of MPCR is demonstrated with several numerical tests, including a use-case study in gyrokinetic fusion plasma simulations. The computational cost of MPCR is negligible compared to the cost of particle evolution in PIC methods, and the tests demonstrate that periodic particle resampling yields a significant improvement in the accuracy and stability of the results.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2020.109317</doi><orcidid>https://orcid.org/0000-0002-6356-233X</orcidid><orcidid>https://orcid.org/000000026356233X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2020-05, Vol.409 (C), p.109317, Article 109317
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1600081
source Access via ScienceDirect (Elsevier)
subjects Accuracy
Algorithms
Computational physics
Computer simulation
Computing costs
Constrained optimization
Distribution function moments
Particle in cell technique
Particle resampling
Particle-in-cell
Resampling
title Moment preserving constrained resampling with applications to particle-in-cell methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T05%3A06%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moment%20preserving%20constrained%20resampling%20with%20applications%20to%20particle-in-cell%20methods&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Faghihi,%20D.&rft.date=2020-05-15&rft.volume=409&rft.issue=C&rft.spage=109317&rft.pages=109317-&rft.artnum=109317&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2020.109317&rft_dat=%3Cproquest_osti_%3E2441886182%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441886182&rft_id=info:pmid/&rft_els_id=S0021999120300917&rfr_iscdi=true