No-core shell model calculations of the photonuclear cross section of 10B

. Results of ab initio no-core, shell model calculations for the photonuclear cross section of 10 B are presented using realistic two-nucleon (NN) chiral forces up to next-to-next-to-next-order (N3LO) softened by the similarity renormalization group method (SRG) with λ = 2 . 02 fm -1 . The electric-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. A, Hadrons and nuclei Hadrons and nuclei, 2019, Vol.55 (12), p.1-9, Article 225
Hauptverfasser: Kruse, M. K. G., Ormand, W. E., Johnson, C. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 12
container_start_page 1
container_title The European physical journal. A, Hadrons and nuclei
container_volume 55
creator Kruse, M. K. G.
Ormand, W. E.
Johnson, C. W.
description . Results of ab initio no-core, shell model calculations for the photonuclear cross section of 10 B are presented using realistic two-nucleon (NN) chiral forces up to next-to-next-to-next-order (N3LO) softened by the similarity renormalization group method (SRG) with λ = 2 . 02 fm -1 . The electric-dipole response function is calculated using the Lanczos method, with the effects of the continuum included via neutron escape widths derived from R-matrix theory and using the Lorentz integral transform method. The calculated cross section agrees well with experimental data in terms of structure as well as in absolute peak height, σ max = 4 . 85 mb at photon energy ω = 23 . 61 MeV, and integrated cross section 85.36 MeV . mb. We also test the Brink hypothesis by calculating the electric-dipole response for the first nine positive-parity states with J ≠ 0 in 10 B and verify that dipole excitations built upon the ground and excited states have similar characteristics.
doi_str_mv 10.1140/epja/i2019-12905-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1597583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2319531441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1911-66c2cc4bd93ade6690b46d28c227f401f19a969103e728deccf041c10ada42d73</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5gsmEN9tuPUI1R8VKpgAYnNci8OSZXGwU4G_j1Jg2Bjuhue99XdQ8glsBsAyRau3dlFxRnoBLhmaQJHZAZSyEQxeD_-3RmckrMYd4wxybWakfWzT9AHR2Pp6prufe5qirbGvrZd5ZtIfUG70tG29J1veqydDRSDj5FGhyMyEsDuzslJYevoLn7mnLw93L-unpLNy-N6dbtJEDRAohRyRLnNtbC5U0qzrVQ5XyLnWSEZFKCtVhqYcBlf5g6xYBIQmM2t5Hkm5uRq6vWxq0zEqnNYom-a4RoDqc7SpRig6wlqg__sXezMzvehGe4yXIBOBUgJA8Un6vBPcIVpQ7W34csAM6NXM3o1B6_m4NWMITGF4gA3Hy78Vf-T-gZOyXuU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319531441</pqid></control><display><type>article</type><title>No-core shell model calculations of the photonuclear cross section of 10B</title><source>Springer Nature - Complete Springer Journals</source><creator>Kruse, M. K. G. ; Ormand, W. E. ; Johnson, C. W.</creator><creatorcontrib>Kruse, M. K. G. ; Ormand, W. E. ; Johnson, C. W. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>. Results of ab initio no-core, shell model calculations for the photonuclear cross section of 10 B are presented using realistic two-nucleon (NN) chiral forces up to next-to-next-to-next-order (N3LO) softened by the similarity renormalization group method (SRG) with λ = 2 . 02 fm -1 . The electric-dipole response function is calculated using the Lanczos method, with the effects of the continuum included via neutron escape widths derived from R-matrix theory and using the Lorentz integral transform method. The calculated cross section agrees well with experimental data in terms of structure as well as in absolute peak height, σ max = 4 . 85 mb at photon energy ω = 23 . 61 MeV, and integrated cross section 85.36 MeV . mb. We also test the Brink hypothesis by calculating the electric-dipole response for the first nine positive-parity states with J ≠ 0 in 10 B and verify that dipole excitations built upon the ground and excited states have similar characteristics.</description><identifier>ISSN: 1434-6001</identifier><identifier>EISSN: 1434-601X</identifier><identifier>DOI: 10.1140/epja/i2019-12905-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Dipoles ; Giant ; Hadrons ; Heavy Ions ; Integral transforms ; Mathematical models ; Matrix theory ; Nuclear cross sections ; Nuclear Fusion ; Nuclear Physics ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Nucleons ; Pairing Resonances and Related Topics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Pygmy ; radiation physics ; Regular Article - Theoretical Physics ; Response functions</subject><ispartof>The European physical journal. A, Hadrons and nuclei, 2019, Vol.55 (12), p.1-9, Article 225</ispartof><rights>Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1911-66c2cc4bd93ade6690b46d28c227f401f19a969103e728deccf041c10ada42d73</citedby><cites>FETCH-LOGICAL-c1911-66c2cc4bd93ade6690b46d28c227f401f19a969103e728deccf041c10ada42d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epja/i2019-12905-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epja/i2019-12905-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1597583$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruse, M. K. G.</creatorcontrib><creatorcontrib>Ormand, W. E.</creatorcontrib><creatorcontrib>Johnson, C. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>No-core shell model calculations of the photonuclear cross section of 10B</title><title>The European physical journal. A, Hadrons and nuclei</title><addtitle>Eur. Phys. J. A</addtitle><description>. Results of ab initio no-core, shell model calculations for the photonuclear cross section of 10 B are presented using realistic two-nucleon (NN) chiral forces up to next-to-next-to-next-order (N3LO) softened by the similarity renormalization group method (SRG) with λ = 2 . 02 fm -1 . The electric-dipole response function is calculated using the Lanczos method, with the effects of the continuum included via neutron escape widths derived from R-matrix theory and using the Lorentz integral transform method. The calculated cross section agrees well with experimental data in terms of structure as well as in absolute peak height, σ max = 4 . 85 mb at photon energy ω = 23 . 61 MeV, and integrated cross section 85.36 MeV . mb. We also test the Brink hypothesis by calculating the electric-dipole response for the first nine positive-parity states with J ≠ 0 in 10 B and verify that dipole excitations built upon the ground and excited states have similar characteristics.</description><subject>Dipoles</subject><subject>Giant</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Integral transforms</subject><subject>Mathematical models</subject><subject>Matrix theory</subject><subject>Nuclear cross sections</subject><subject>Nuclear Fusion</subject><subject>Nuclear Physics</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Nucleons</subject><subject>Pairing Resonances and Related Topics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pygmy</subject><subject>radiation physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Response functions</subject><issn>1434-6001</issn><issn>1434-601X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5gsmEN9tuPUI1R8VKpgAYnNci8OSZXGwU4G_j1Jg2Bjuhue99XdQ8glsBsAyRau3dlFxRnoBLhmaQJHZAZSyEQxeD_-3RmckrMYd4wxybWakfWzT9AHR2Pp6prufe5qirbGvrZd5ZtIfUG70tG29J1veqydDRSDj5FGhyMyEsDuzslJYevoLn7mnLw93L-unpLNy-N6dbtJEDRAohRyRLnNtbC5U0qzrVQ5XyLnWSEZFKCtVhqYcBlf5g6xYBIQmM2t5Hkm5uRq6vWxq0zEqnNYom-a4RoDqc7SpRig6wlqg__sXezMzvehGe4yXIBOBUgJA8Un6vBPcIVpQ7W34csAM6NXM3o1B6_m4NWMITGF4gA3Hy78Vf-T-gZOyXuU</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kruse, M. K. G.</creator><creator>Ormand, W. E.</creator><creator>Johnson, C. W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>2019</creationdate><title>No-core shell model calculations of the photonuclear cross section of 10B</title><author>Kruse, M. K. G. ; Ormand, W. E. ; Johnson, C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1911-66c2cc4bd93ade6690b46d28c227f401f19a969103e728deccf041c10ada42d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dipoles</topic><topic>Giant</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Integral transforms</topic><topic>Mathematical models</topic><topic>Matrix theory</topic><topic>Nuclear cross sections</topic><topic>Nuclear Fusion</topic><topic>Nuclear Physics</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Nucleons</topic><topic>Pairing Resonances and Related Topics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pygmy</topic><topic>radiation physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Response functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruse, M. K. G.</creatorcontrib><creatorcontrib>Ormand, W. E.</creatorcontrib><creatorcontrib>Johnson, C. W.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The European physical journal. A, Hadrons and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruse, M. K. G.</au><au>Ormand, W. E.</au><au>Johnson, C. W.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>No-core shell model calculations of the photonuclear cross section of 10B</atitle><jtitle>The European physical journal. A, Hadrons and nuclei</jtitle><stitle>Eur. Phys. J. A</stitle><date>2019</date><risdate>2019</risdate><volume>55</volume><issue>12</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><artnum>225</artnum><issn>1434-6001</issn><eissn>1434-601X</eissn><abstract>. Results of ab initio no-core, shell model calculations for the photonuclear cross section of 10 B are presented using realistic two-nucleon (NN) chiral forces up to next-to-next-to-next-order (N3LO) softened by the similarity renormalization group method (SRG) with λ = 2 . 02 fm -1 . The electric-dipole response function is calculated using the Lanczos method, with the effects of the continuum included via neutron escape widths derived from R-matrix theory and using the Lorentz integral transform method. The calculated cross section agrees well with experimental data in terms of structure as well as in absolute peak height, σ max = 4 . 85 mb at photon energy ω = 23 . 61 MeV, and integrated cross section 85.36 MeV . mb. We also test the Brink hypothesis by calculating the electric-dipole response for the first nine positive-parity states with J ≠ 0 in 10 B and verify that dipole excitations built upon the ground and excited states have similar characteristics.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epja/i2019-12905-1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6001
ispartof The European physical journal. A, Hadrons and nuclei, 2019, Vol.55 (12), p.1-9, Article 225
issn 1434-6001
1434-601X
language eng
recordid cdi_osti_scitechconnect_1597583
source Springer Nature - Complete Springer Journals
subjects Dipoles
Giant
Hadrons
Heavy Ions
Integral transforms
Mathematical models
Matrix theory
Nuclear cross sections
Nuclear Fusion
Nuclear Physics
NUCLEAR PHYSICS AND RADIATION PHYSICS
Nucleons
Pairing Resonances and Related Topics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Pygmy
radiation physics
Regular Article - Theoretical Physics
Response functions
title No-core shell model calculations of the photonuclear cross section of 10B
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A51%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=No-core%20shell%20model%20calculations%20of%20the%20photonuclear%20cross%20section%20of%2010B&rft.jtitle=The%20European%20physical%20journal.%20A,%20Hadrons%20and%20nuclei&rft.au=Kruse,%20M.%20K.%20G.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019&rft.volume=55&rft.issue=12&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.artnum=225&rft.issn=1434-6001&rft.eissn=1434-601X&rft_id=info:doi/10.1140/epja/i2019-12905-1&rft_dat=%3Cproquest_osti_%3E2319531441%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319531441&rft_id=info:pmid/&rfr_iscdi=true