Multiple Charge Transfer States in Donor–Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets
In this work, we demonstrate several organic amorphous donor–acceptor systems that exhibit sub-bandgap features over a more than 2 eV spectral range. An in-depth study of one of these systems, NPB:HAT-CN (NPB is N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine and HAT-CN is 1,4,5,8,9,...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2019-09, Vol.31 (17), p.6808-6817 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6817 |
---|---|
container_issue | 17 |
container_start_page | 6808 |
container_title | Chemistry of materials |
container_volume | 31 |
creator | Khan, Saeed-Uz-Zaman Londi, Giacomo Liu, Xiao Fusella, Michael A D’Avino, Gabriele Muccioli, Luca Brigeman, Alyssa N Niesen, Bjoern Yang, Terry Chien-Jen Olivier, Yoann Dull, Jordan T Giebink, Noel C Beljonne, David Rand, Barry P |
description | In this work, we demonstrate several organic amorphous donor–acceptor systems that exhibit sub-bandgap features over a more than 2 eV spectral range. An in-depth study of one of these systems, NPB:HAT-CN (NPB is N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine and HAT-CN is 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile), reveals that the broad sub-bandgap features are attributed to multiple electronic charge transfer (CT) state transitions, broadened by energetic disorder sourcing from the fluctuations of intramolecular conformations and by the disordered intermolecular environment. These unique CT features originate from an unconventional donor and acceptor selection that reveals new insight about photocurrent generation and nonradiative recombination. Unlike materials employed in high performing organic solar cells, the materials studied here feature large optical energy gaps with very large frontier orbital energy level offsets, creating high bandgap devices with low open-circuit voltage. In addition to multiple electronic CT levels, we reveal that the internal quantum efficiency of these multiple CT transitions is not constant but photon energy dependent and with photoluminescence that originates primarily from the second lowest electronic CT state implying slow (relative to radiative and nonradiative rates) internal conversion within the CT manifold. Overall, this class of donor–acceptor pairs provides an opportunity to probe CT states in unique ways to potentially unravel their role in carrier generation–recombination and energy loss mechanisms. |
doi_str_mv | 10.1021/acs.chemmater.9b01279 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1595398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c021909537</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-d10e72ad8aaf98104a9188d43f660e11ce523f91a207707d3b398205c54792de3</originalsourceid><addsrcrecordid>eNqFkcFuEzEQhi0EEqHwCEgWNw4bZrzr7PoYhbZBCsqBcrYc72zX0caObAfUW9-BN-RJ6pCqV04jzXzfjEY_Yx8R5ggCvxib5nakw8FkinO1AxStesVmKAVUEkC8ZjPoVFs1rVy8Ze9S2gNgUbsZ899PU3bHifhqNPGe-F00Pg0U-Y9c1iXuPP8afIh_H_8sraVjDpGvqRwK-5O32QWf-G-XR775p9_E4LMr-jbuXDYTv_YU7x_4dhgS5fSevRnMlOjDc71iP2-u71brarO9_bZabirTQJ2rHoFaYfrOmEF1CI1R2HV9Uw-LBRCiJSnqQaER0LbQ9vWuVp0AaWXTKtFTfcU-XfaGlJ1O1mWyow3ek80apZKFL9DnCzSaSR-jO5j4oINxer3c6HMPRK0UovqFhZUX1saQUqThRUDQ5xR0SUG_pKCfUygeXrzzeB9O0Ze3_-M8AX1ikK8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiple Charge Transfer States in Donor–Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets</title><source>ACS Publications</source><creator>Khan, Saeed-Uz-Zaman ; Londi, Giacomo ; Liu, Xiao ; Fusella, Michael A ; D’Avino, Gabriele ; Muccioli, Luca ; Brigeman, Alyssa N ; Niesen, Bjoern ; Yang, Terry Chien-Jen ; Olivier, Yoann ; Dull, Jordan T ; Giebink, Noel C ; Beljonne, David ; Rand, Barry P</creator><creatorcontrib>Khan, Saeed-Uz-Zaman ; Londi, Giacomo ; Liu, Xiao ; Fusella, Michael A ; D’Avino, Gabriele ; Muccioli, Luca ; Brigeman, Alyssa N ; Niesen, Bjoern ; Yang, Terry Chien-Jen ; Olivier, Yoann ; Dull, Jordan T ; Giebink, Noel C ; Beljonne, David ; Rand, Barry P ; Princeton Univ., NJ (United States) ; Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><description>In this work, we demonstrate several organic amorphous donor–acceptor systems that exhibit sub-bandgap features over a more than 2 eV spectral range. An in-depth study of one of these systems, NPB:HAT-CN (NPB is N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine and HAT-CN is 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile), reveals that the broad sub-bandgap features are attributed to multiple electronic charge transfer (CT) state transitions, broadened by energetic disorder sourcing from the fluctuations of intramolecular conformations and by the disordered intermolecular environment. These unique CT features originate from an unconventional donor and acceptor selection that reveals new insight about photocurrent generation and nonradiative recombination. Unlike materials employed in high performing organic solar cells, the materials studied here feature large optical energy gaps with very large frontier orbital energy level offsets, creating high bandgap devices with low open-circuit voltage. In addition to multiple electronic CT levels, we reveal that the internal quantum efficiency of these multiple CT transitions is not constant but photon energy dependent and with photoluminescence that originates primarily from the second lowest electronic CT state implying slow (relative to radiative and nonradiative rates) internal conversion within the CT manifold. Overall, this class of donor–acceptor pairs provides an opportunity to probe CT states in unique ways to potentially unravel their role in carrier generation–recombination and energy loss mechanisms.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b01279</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>charge transfer state ; Chemical Sciences ; Condensed Matter ; donor-acceptor ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Material chemistry ; Materials Science ; organic ; photovoltaic ; Physics</subject><ispartof>Chemistry of materials, 2019-09, Vol.31 (17), p.6808-6817</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-d10e72ad8aaf98104a9188d43f660e11ce523f91a207707d3b398205c54792de3</citedby><cites>FETCH-LOGICAL-a403t-d10e72ad8aaf98104a9188d43f660e11ce523f91a207707d3b398205c54792de3</cites><orcidid>0000-0002-2989-3557 ; 0000-0003-4409-8751 ; 0000-0002-5897-2924 ; 0000-0001-9227-1059 ; 0000-0002-3798-5830 ; 0000-0001-7777-9161 ; 0000-0001-5082-9990 ; 0000000229893557 ; 0000000267960562 ; 0000000344098751 ; 0000000253976694 ; 0000000258972924 ; 0000000237985830 ; 0000000321931536 ; 0000000337991939 ; 0000000224598487 ; 0000000242034204 ; 0000000192271059 ; 0000000177779161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b01279$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b01279$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02399119$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1595398$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Khan, Saeed-Uz-Zaman</creatorcontrib><creatorcontrib>Londi, Giacomo</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Fusella, Michael A</creatorcontrib><creatorcontrib>D’Avino, Gabriele</creatorcontrib><creatorcontrib>Muccioli, Luca</creatorcontrib><creatorcontrib>Brigeman, Alyssa N</creatorcontrib><creatorcontrib>Niesen, Bjoern</creatorcontrib><creatorcontrib>Yang, Terry Chien-Jen</creatorcontrib><creatorcontrib>Olivier, Yoann</creatorcontrib><creatorcontrib>Dull, Jordan T</creatorcontrib><creatorcontrib>Giebink, Noel C</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Rand, Barry P</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><title>Multiple Charge Transfer States in Donor–Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>In this work, we demonstrate several organic amorphous donor–acceptor systems that exhibit sub-bandgap features over a more than 2 eV spectral range. An in-depth study of one of these systems, NPB:HAT-CN (NPB is N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine and HAT-CN is 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile), reveals that the broad sub-bandgap features are attributed to multiple electronic charge transfer (CT) state transitions, broadened by energetic disorder sourcing from the fluctuations of intramolecular conformations and by the disordered intermolecular environment. These unique CT features originate from an unconventional donor and acceptor selection that reveals new insight about photocurrent generation and nonradiative recombination. Unlike materials employed in high performing organic solar cells, the materials studied here feature large optical energy gaps with very large frontier orbital energy level offsets, creating high bandgap devices with low open-circuit voltage. In addition to multiple electronic CT levels, we reveal that the internal quantum efficiency of these multiple CT transitions is not constant but photon energy dependent and with photoluminescence that originates primarily from the second lowest electronic CT state implying slow (relative to radiative and nonradiative rates) internal conversion within the CT manifold. Overall, this class of donor–acceptor pairs provides an opportunity to probe CT states in unique ways to potentially unravel their role in carrier generation–recombination and energy loss mechanisms.</description><subject>charge transfer state</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>donor-acceptor</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Material chemistry</subject><subject>Materials Science</subject><subject>organic</subject><subject>photovoltaic</subject><subject>Physics</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkcFuEzEQhi0EEqHwCEgWNw4bZrzr7PoYhbZBCsqBcrYc72zX0caObAfUW9-BN-RJ6pCqV04jzXzfjEY_Yx8R5ggCvxib5nakw8FkinO1AxStesVmKAVUEkC8ZjPoVFs1rVy8Ze9S2gNgUbsZ899PU3bHifhqNPGe-F00Pg0U-Y9c1iXuPP8afIh_H_8sraVjDpGvqRwK-5O32QWf-G-XR775p9_E4LMr-jbuXDYTv_YU7x_4dhgS5fSevRnMlOjDc71iP2-u71brarO9_bZabirTQJ2rHoFaYfrOmEF1CI1R2HV9Uw-LBRCiJSnqQaER0LbQ9vWuVp0AaWXTKtFTfcU-XfaGlJ1O1mWyow3ek80apZKFL9DnCzSaSR-jO5j4oINxer3c6HMPRK0UovqFhZUX1saQUqThRUDQ5xR0SUG_pKCfUygeXrzzeB9O0Ze3_-M8AX1ikK8</recordid><startdate>20190910</startdate><enddate>20190910</enddate><creator>Khan, Saeed-Uz-Zaman</creator><creator>Londi, Giacomo</creator><creator>Liu, Xiao</creator><creator>Fusella, Michael A</creator><creator>D’Avino, Gabriele</creator><creator>Muccioli, Luca</creator><creator>Brigeman, Alyssa N</creator><creator>Niesen, Bjoern</creator><creator>Yang, Terry Chien-Jen</creator><creator>Olivier, Yoann</creator><creator>Dull, Jordan T</creator><creator>Giebink, Noel C</creator><creator>Beljonne, David</creator><creator>Rand, Barry P</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2989-3557</orcidid><orcidid>https://orcid.org/0000-0003-4409-8751</orcidid><orcidid>https://orcid.org/0000-0002-5897-2924</orcidid><orcidid>https://orcid.org/0000-0001-9227-1059</orcidid><orcidid>https://orcid.org/0000-0002-3798-5830</orcidid><orcidid>https://orcid.org/0000-0001-7777-9161</orcidid><orcidid>https://orcid.org/0000-0001-5082-9990</orcidid><orcidid>https://orcid.org/0000000229893557</orcidid><orcidid>https://orcid.org/0000000267960562</orcidid><orcidid>https://orcid.org/0000000344098751</orcidid><orcidid>https://orcid.org/0000000253976694</orcidid><orcidid>https://orcid.org/0000000258972924</orcidid><orcidid>https://orcid.org/0000000237985830</orcidid><orcidid>https://orcid.org/0000000321931536</orcidid><orcidid>https://orcid.org/0000000337991939</orcidid><orcidid>https://orcid.org/0000000224598487</orcidid><orcidid>https://orcid.org/0000000242034204</orcidid><orcidid>https://orcid.org/0000000192271059</orcidid><orcidid>https://orcid.org/0000000177779161</orcidid></search><sort><creationdate>20190910</creationdate><title>Multiple Charge Transfer States in Donor–Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets</title><author>Khan, Saeed-Uz-Zaman ; Londi, Giacomo ; Liu, Xiao ; Fusella, Michael A ; D’Avino, Gabriele ; Muccioli, Luca ; Brigeman, Alyssa N ; Niesen, Bjoern ; Yang, Terry Chien-Jen ; Olivier, Yoann ; Dull, Jordan T ; Giebink, Noel C ; Beljonne, David ; Rand, Barry P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-d10e72ad8aaf98104a9188d43f660e11ce523f91a207707d3b398205c54792de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>charge transfer state</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>donor-acceptor</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Material chemistry</topic><topic>Materials Science</topic><topic>organic</topic><topic>photovoltaic</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Saeed-Uz-Zaman</creatorcontrib><creatorcontrib>Londi, Giacomo</creatorcontrib><creatorcontrib>Liu, Xiao</creatorcontrib><creatorcontrib>Fusella, Michael A</creatorcontrib><creatorcontrib>D’Avino, Gabriele</creatorcontrib><creatorcontrib>Muccioli, Luca</creatorcontrib><creatorcontrib>Brigeman, Alyssa N</creatorcontrib><creatorcontrib>Niesen, Bjoern</creatorcontrib><creatorcontrib>Yang, Terry Chien-Jen</creatorcontrib><creatorcontrib>Olivier, Yoann</creatorcontrib><creatorcontrib>Dull, Jordan T</creatorcontrib><creatorcontrib>Giebink, Noel C</creatorcontrib><creatorcontrib>Beljonne, David</creatorcontrib><creatorcontrib>Rand, Barry P</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><creatorcontrib>Pennsylvania State Univ., University Park, PA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Saeed-Uz-Zaman</au><au>Londi, Giacomo</au><au>Liu, Xiao</au><au>Fusella, Michael A</au><au>D’Avino, Gabriele</au><au>Muccioli, Luca</au><au>Brigeman, Alyssa N</au><au>Niesen, Bjoern</au><au>Yang, Terry Chien-Jen</au><au>Olivier, Yoann</au><au>Dull, Jordan T</au><au>Giebink, Noel C</au><au>Beljonne, David</au><au>Rand, Barry P</au><aucorp>Princeton Univ., NJ (United States)</aucorp><aucorp>Pennsylvania State Univ., University Park, PA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Charge Transfer States in Donor–Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-09-10</date><risdate>2019</risdate><volume>31</volume><issue>17</issue><spage>6808</spage><epage>6817</epage><pages>6808-6817</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>In this work, we demonstrate several organic amorphous donor–acceptor systems that exhibit sub-bandgap features over a more than 2 eV spectral range. An in-depth study of one of these systems, NPB:HAT-CN (NPB is N,N′-di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine and HAT-CN is 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile), reveals that the broad sub-bandgap features are attributed to multiple electronic charge transfer (CT) state transitions, broadened by energetic disorder sourcing from the fluctuations of intramolecular conformations and by the disordered intermolecular environment. These unique CT features originate from an unconventional donor and acceptor selection that reveals new insight about photocurrent generation and nonradiative recombination. Unlike materials employed in high performing organic solar cells, the materials studied here feature large optical energy gaps with very large frontier orbital energy level offsets, creating high bandgap devices with low open-circuit voltage. In addition to multiple electronic CT levels, we reveal that the internal quantum efficiency of these multiple CT transitions is not constant but photon energy dependent and with photoluminescence that originates primarily from the second lowest electronic CT state implying slow (relative to radiative and nonradiative rates) internal conversion within the CT manifold. Overall, this class of donor–acceptor pairs provides an opportunity to probe CT states in unique ways to potentially unravel their role in carrier generation–recombination and energy loss mechanisms.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b01279</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2989-3557</orcidid><orcidid>https://orcid.org/0000-0003-4409-8751</orcidid><orcidid>https://orcid.org/0000-0002-5897-2924</orcidid><orcidid>https://orcid.org/0000-0001-9227-1059</orcidid><orcidid>https://orcid.org/0000-0002-3798-5830</orcidid><orcidid>https://orcid.org/0000-0001-7777-9161</orcidid><orcidid>https://orcid.org/0000-0001-5082-9990</orcidid><orcidid>https://orcid.org/0000000229893557</orcidid><orcidid>https://orcid.org/0000000267960562</orcidid><orcidid>https://orcid.org/0000000344098751</orcidid><orcidid>https://orcid.org/0000000253976694</orcidid><orcidid>https://orcid.org/0000000258972924</orcidid><orcidid>https://orcid.org/0000000237985830</orcidid><orcidid>https://orcid.org/0000000321931536</orcidid><orcidid>https://orcid.org/0000000337991939</orcidid><orcidid>https://orcid.org/0000000224598487</orcidid><orcidid>https://orcid.org/0000000242034204</orcidid><orcidid>https://orcid.org/0000000192271059</orcidid><orcidid>https://orcid.org/0000000177779161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2019-09, Vol.31 (17), p.6808-6817 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1595398 |
source | ACS Publications |
subjects | charge transfer state Chemical Sciences Condensed Matter donor-acceptor INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Material chemistry Materials Science organic photovoltaic Physics |
title | Multiple Charge Transfer States in Donor–Acceptor Heterojunctions with Large Frontier Orbital Energy Offsets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T03%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Charge%20Transfer%20States%20in%20Donor%E2%80%93Acceptor%20Heterojunctions%20with%20Large%20Frontier%20Orbital%20Energy%20Offsets&rft.jtitle=Chemistry%20of%20materials&rft.au=Khan,%20Saeed-Uz-Zaman&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2019-09-10&rft.volume=31&rft.issue=17&rft.spage=6808&rft.epage=6817&rft.pages=6808-6817&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b01279&rft_dat=%3Cacs_osti_%3Ec021909537%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |