Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4
The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, h...
Gespeichert in:
Veröffentlicht in: | Physical review. X 2019-11, Vol.9 (4), Article 041038 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physical review. X |
container_volume | 9 |
creator | Hao, Yu-Jie Liu, Pengfei Feng, Yue Ma, Xiao-Ming Schwier, Eike F. Arita, Masashi Kumar, Shiv Hu, Chaowei Lu, Rui’e Zeng, Meng Wang, Yuan Hao, Zhanyang Sun, Hong-Yi Zhang, Ke Mei, Jiawei Ni, Ni Wu, Liusuo Shimada, Kenya Chen, Chaoyu Liu, Qihang Liu, Chang |
description | The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2Te4 exists inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk N´eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab initio calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results unveil the experimental topological properties of MnBi2Te4, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials. |
doi_str_mv | 10.1103/PhysRevX.9.041038 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1595174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevX_9_041038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1654-e89326312beae8cf0c6d040ca56318a9e326b0a6e67608a8a484736ad363b4ed3</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWGo_gLfgfWuyyWazx1q1Fir-W8FbeE3ftpFtUpKt0G_vShV8l3nMDHP4EXLJ2ZhzJq6fN4f0il8f42rMZG_oEzLIuWKZEEyf_vvPySilT9afYlyW5YC8zGDXYkr0bR8bsEhvXQRLp8EjdZ5OfOcajDFsYe2xc5bWYRfasHYWWjr3ad9CFyJ99DeO5rRGKi_IWQNtwtGvDsn7_V09fcgWT7P5dLLILFeFzFBXIleC50sE1LZhVq2YZBaK3tRQYZ8uGShUpWIaNEgtS6FgJZRYSlyJIbk67obUOZOs69BubPAebWd4URW8lH2JH0s2hpQiNmYX3RbiwXBmftiZP3amMkd24htV0WIc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4</title><source>American Physical Society Journals</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Hao, Yu-Jie ; Liu, Pengfei ; Feng, Yue ; Ma, Xiao-Ming ; Schwier, Eike F. ; Arita, Masashi ; Kumar, Shiv ; Hu, Chaowei ; Lu, Rui’e ; Zeng, Meng ; Wang, Yuan ; Hao, Zhanyang ; Sun, Hong-Yi ; Zhang, Ke ; Mei, Jiawei ; Ni, Ni ; Wu, Liusuo ; Shimada, Kenya ; Chen, Chaoyu ; Liu, Qihang ; Liu, Chang</creator><creatorcontrib>Hao, Yu-Jie ; Liu, Pengfei ; Feng, Yue ; Ma, Xiao-Ming ; Schwier, Eike F. ; Arita, Masashi ; Kumar, Shiv ; Hu, Chaowei ; Lu, Rui’e ; Zeng, Meng ; Wang, Yuan ; Hao, Zhanyang ; Sun, Hong-Yi ; Zhang, Ke ; Mei, Jiawei ; Ni, Ni ; Wu, Liusuo ; Shimada, Kenya ; Chen, Chaoyu ; Liu, Qihang ; Liu, Chang ; Univ. of California, Los Angeles, CA (United States)</creatorcontrib><description>The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2Te4 exists inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk N´eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab initio calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results unveil the experimental topological properties of MnBi2Te4, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.9.041038</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Physics</subject><ispartof>Physical review. X, 2019-11, Vol.9 (4), Article 041038</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1654-e89326312beae8cf0c6d040ca56318a9e326b0a6e67608a8a484736ad363b4ed3</citedby><cites>FETCH-LOGICAL-c1654-e89326312beae8cf0c6d040ca56318a9e326b0a6e67608a8a484736ad363b4ed3</cites><orcidid>0000-0003-0068-9664 ; 0000-0003-0103-5267 ; 0000-0002-3930-8294 ; 0000-0002-7738-743X ; 0000-0003-3202-1351 ; 0000-0001-5194-4050 ; 0000-0001-7793-9276 ; 0000-0002-7919-421X ; 0000-0002-1945-2352 ; 0000000301035267 ; 000000027738743X ; 0000000151944050 ; 0000000300689664 ; 0000000239308294 ; 0000000332021351 ; 000000027919421X ; 0000000177939276 ; 0000000219452352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1595174$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Yu-Jie</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Feng, Yue</creatorcontrib><creatorcontrib>Ma, Xiao-Ming</creatorcontrib><creatorcontrib>Schwier, Eike F.</creatorcontrib><creatorcontrib>Arita, Masashi</creatorcontrib><creatorcontrib>Kumar, Shiv</creatorcontrib><creatorcontrib>Hu, Chaowei</creatorcontrib><creatorcontrib>Lu, Rui’e</creatorcontrib><creatorcontrib>Zeng, Meng</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Hao, Zhanyang</creatorcontrib><creatorcontrib>Sun, Hong-Yi</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Mei, Jiawei</creatorcontrib><creatorcontrib>Ni, Ni</creatorcontrib><creatorcontrib>Wu, Liusuo</creatorcontrib><creatorcontrib>Shimada, Kenya</creatorcontrib><creatorcontrib>Chen, Chaoyu</creatorcontrib><creatorcontrib>Liu, Qihang</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><title>Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4</title><title>Physical review. X</title><description>The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2Te4 exists inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk N´eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab initio calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results unveil the experimental topological properties of MnBi2Te4, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Physics</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEUxIMoWGo_gLfgfWuyyWazx1q1Fir-W8FbeE3ftpFtUpKt0G_vShV8l3nMDHP4EXLJ2ZhzJq6fN4f0il8f42rMZG_oEzLIuWKZEEyf_vvPySilT9afYlyW5YC8zGDXYkr0bR8bsEhvXQRLp8EjdZ5OfOcajDFsYe2xc5bWYRfasHYWWjr3ad9CFyJ99DeO5rRGKi_IWQNtwtGvDsn7_V09fcgWT7P5dLLILFeFzFBXIleC50sE1LZhVq2YZBaK3tRQYZ8uGShUpWIaNEgtS6FgJZRYSlyJIbk67obUOZOs69BubPAebWd4URW8lH2JH0s2hpQiNmYX3RbiwXBmftiZP3amMkd24htV0WIc</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Hao, Yu-Jie</creator><creator>Liu, Pengfei</creator><creator>Feng, Yue</creator><creator>Ma, Xiao-Ming</creator><creator>Schwier, Eike F.</creator><creator>Arita, Masashi</creator><creator>Kumar, Shiv</creator><creator>Hu, Chaowei</creator><creator>Lu, Rui’e</creator><creator>Zeng, Meng</creator><creator>Wang, Yuan</creator><creator>Hao, Zhanyang</creator><creator>Sun, Hong-Yi</creator><creator>Zhang, Ke</creator><creator>Mei, Jiawei</creator><creator>Ni, Ni</creator><creator>Wu, Liusuo</creator><creator>Shimada, Kenya</creator><creator>Chen, Chaoyu</creator><creator>Liu, Qihang</creator><creator>Liu, Chang</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0068-9664</orcidid><orcidid>https://orcid.org/0000-0003-0103-5267</orcidid><orcidid>https://orcid.org/0000-0002-3930-8294</orcidid><orcidid>https://orcid.org/0000-0002-7738-743X</orcidid><orcidid>https://orcid.org/0000-0003-3202-1351</orcidid><orcidid>https://orcid.org/0000-0001-5194-4050</orcidid><orcidid>https://orcid.org/0000-0001-7793-9276</orcidid><orcidid>https://orcid.org/0000-0002-7919-421X</orcidid><orcidid>https://orcid.org/0000-0002-1945-2352</orcidid><orcidid>https://orcid.org/0000000301035267</orcidid><orcidid>https://orcid.org/000000027738743X</orcidid><orcidid>https://orcid.org/0000000151944050</orcidid><orcidid>https://orcid.org/0000000300689664</orcidid><orcidid>https://orcid.org/0000000239308294</orcidid><orcidid>https://orcid.org/0000000332021351</orcidid><orcidid>https://orcid.org/000000027919421X</orcidid><orcidid>https://orcid.org/0000000177939276</orcidid><orcidid>https://orcid.org/0000000219452352</orcidid></search><sort><creationdate>20191121</creationdate><title>Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4</title><author>Hao, Yu-Jie ; Liu, Pengfei ; Feng, Yue ; Ma, Xiao-Ming ; Schwier, Eike F. ; Arita, Masashi ; Kumar, Shiv ; Hu, Chaowei ; Lu, Rui’e ; Zeng, Meng ; Wang, Yuan ; Hao, Zhanyang ; Sun, Hong-Yi ; Zhang, Ke ; Mei, Jiawei ; Ni, Ni ; Wu, Liusuo ; Shimada, Kenya ; Chen, Chaoyu ; Liu, Qihang ; Liu, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1654-e89326312beae8cf0c6d040ca56318a9e326b0a6e67608a8a484736ad363b4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yu-Jie</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Feng, Yue</creatorcontrib><creatorcontrib>Ma, Xiao-Ming</creatorcontrib><creatorcontrib>Schwier, Eike F.</creatorcontrib><creatorcontrib>Arita, Masashi</creatorcontrib><creatorcontrib>Kumar, Shiv</creatorcontrib><creatorcontrib>Hu, Chaowei</creatorcontrib><creatorcontrib>Lu, Rui’e</creatorcontrib><creatorcontrib>Zeng, Meng</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Hao, Zhanyang</creatorcontrib><creatorcontrib>Sun, Hong-Yi</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Mei, Jiawei</creatorcontrib><creatorcontrib>Ni, Ni</creatorcontrib><creatorcontrib>Wu, Liusuo</creatorcontrib><creatorcontrib>Shimada, Kenya</creatorcontrib><creatorcontrib>Chen, Chaoyu</creatorcontrib><creatorcontrib>Liu, Qihang</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yu-Jie</au><au>Liu, Pengfei</au><au>Feng, Yue</au><au>Ma, Xiao-Ming</au><au>Schwier, Eike F.</au><au>Arita, Masashi</au><au>Kumar, Shiv</au><au>Hu, Chaowei</au><au>Lu, Rui’e</au><au>Zeng, Meng</au><au>Wang, Yuan</au><au>Hao, Zhanyang</au><au>Sun, Hong-Yi</au><au>Zhang, Ke</au><au>Mei, Jiawei</au><au>Ni, Ni</au><au>Wu, Liusuo</au><au>Shimada, Kenya</au><au>Chen, Chaoyu</au><au>Liu, Qihang</au><au>Liu, Chang</au><aucorp>Univ. of California, Los Angeles, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4</atitle><jtitle>Physical review. X</jtitle><date>2019-11-21</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><artnum>041038</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2Te4 exists inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk N´eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab initio calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results unveil the experimental topological properties of MnBi2Te4, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.9.041038</doi><orcidid>https://orcid.org/0000-0003-0068-9664</orcidid><orcidid>https://orcid.org/0000-0003-0103-5267</orcidid><orcidid>https://orcid.org/0000-0002-3930-8294</orcidid><orcidid>https://orcid.org/0000-0002-7738-743X</orcidid><orcidid>https://orcid.org/0000-0003-3202-1351</orcidid><orcidid>https://orcid.org/0000-0001-5194-4050</orcidid><orcidid>https://orcid.org/0000-0001-7793-9276</orcidid><orcidid>https://orcid.org/0000-0002-7919-421X</orcidid><orcidid>https://orcid.org/0000-0002-1945-2352</orcidid><orcidid>https://orcid.org/0000000301035267</orcidid><orcidid>https://orcid.org/000000027738743X</orcidid><orcidid>https://orcid.org/0000000151944050</orcidid><orcidid>https://orcid.org/0000000300689664</orcidid><orcidid>https://orcid.org/0000000239308294</orcidid><orcidid>https://orcid.org/0000000332021351</orcidid><orcidid>https://orcid.org/000000027919421X</orcidid><orcidid>https://orcid.org/0000000177939276</orcidid><orcidid>https://orcid.org/0000000219452352</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2160-3308 |
ispartof | Physical review. X, 2019-11, Vol.9 (4), Article 041038 |
issn | 2160-3308 2160-3308 |
language | eng |
recordid | cdi_osti_scitechconnect_1595174 |
source | American Physical Society Journals; Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS Physics |
title | Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gapless%20Surface%20Dirac%20Cone%20in%20Antiferromagnetic%20Topological%20Insulator%20MnBi%202%20Te%204&rft.jtitle=Physical%20review.%20X&rft.au=Hao,%20Yu-Jie&rft.aucorp=Univ.%20of%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2019-11-21&rft.volume=9&rft.issue=4&rft.artnum=041038&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.9.041038&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevX_9_041038%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |