Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4

The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2019-11, Vol.9 (4), Article 041038
Hauptverfasser: Hao, Yu-Jie, Liu, Pengfei, Feng, Yue, Ma, Xiao-Ming, Schwier, Eike F., Arita, Masashi, Kumar, Shiv, Hu, Chaowei, Lu, Rui’e, Zeng, Meng, Wang, Yuan, Hao, Zhanyang, Sun, Hong-Yi, Zhang, Ke, Mei, Jiawei, Ni, Ni, Wu, Liusuo, Shimada, Kenya, Chen, Chaoyu, Liu, Qihang, Liu, Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. X
container_volume 9
creator Hao, Yu-Jie
Liu, Pengfei
Feng, Yue
Ma, Xiao-Ming
Schwier, Eike F.
Arita, Masashi
Kumar, Shiv
Hu, Chaowei
Lu, Rui’e
Zeng, Meng
Wang, Yuan
Hao, Zhanyang
Sun, Hong-Yi
Zhang, Ke
Mei, Jiawei
Ni, Ni
Wu, Liusuo
Shimada, Kenya
Chen, Chaoyu
Liu, Qihang
Liu, Chang
description The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2Te4 exists inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk N´eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab initio calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results unveil the experimental topological properties of MnBi2Te4, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials.
doi_str_mv 10.1103/PhysRevX.9.041038
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1595174</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevX_9_041038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1654-e89326312beae8cf0c6d040ca56318a9e326b0a6e67608a8a484736ad363b4ed3</originalsourceid><addsrcrecordid>eNpNkE9LAzEUxIMoWGo_gLfgfWuyyWazx1q1Fir-W8FbeE3ftpFtUpKt0G_vShV8l3nMDHP4EXLJ2ZhzJq6fN4f0il8f42rMZG_oEzLIuWKZEEyf_vvPySilT9afYlyW5YC8zGDXYkr0bR8bsEhvXQRLp8EjdZ5OfOcajDFsYe2xc5bWYRfasHYWWjr3ad9CFyJ99DeO5rRGKi_IWQNtwtGvDsn7_V09fcgWT7P5dLLILFeFzFBXIleC50sE1LZhVq2YZBaK3tRQYZ8uGShUpWIaNEgtS6FgJZRYSlyJIbk67obUOZOs69BubPAebWd4URW8lH2JH0s2hpQiNmYX3RbiwXBmftiZP3amMkd24htV0WIc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4</title><source>American Physical Society Journals</source><source>Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Hao, Yu-Jie ; Liu, Pengfei ; Feng, Yue ; Ma, Xiao-Ming ; Schwier, Eike F. ; Arita, Masashi ; Kumar, Shiv ; Hu, Chaowei ; Lu, Rui’e ; Zeng, Meng ; Wang, Yuan ; Hao, Zhanyang ; Sun, Hong-Yi ; Zhang, Ke ; Mei, Jiawei ; Ni, Ni ; Wu, Liusuo ; Shimada, Kenya ; Chen, Chaoyu ; Liu, Qihang ; Liu, Chang</creator><creatorcontrib>Hao, Yu-Jie ; Liu, Pengfei ; Feng, Yue ; Ma, Xiao-Ming ; Schwier, Eike F. ; Arita, Masashi ; Kumar, Shiv ; Hu, Chaowei ; Lu, Rui’e ; Zeng, Meng ; Wang, Yuan ; Hao, Zhanyang ; Sun, Hong-Yi ; Zhang, Ke ; Mei, Jiawei ; Ni, Ni ; Wu, Liusuo ; Shimada, Kenya ; Chen, Chaoyu ; Liu, Qihang ; Liu, Chang ; Univ. of California, Los Angeles, CA (United States)</creatorcontrib><description>The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2Te4 exists inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk N´eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab initio calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results unveil the experimental topological properties of MnBi2Te4, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials.</description><identifier>ISSN: 2160-3308</identifier><identifier>EISSN: 2160-3308</identifier><identifier>DOI: 10.1103/PhysRevX.9.041038</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Physics</subject><ispartof>Physical review. X, 2019-11, Vol.9 (4), Article 041038</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1654-e89326312beae8cf0c6d040ca56318a9e326b0a6e67608a8a484736ad363b4ed3</citedby><cites>FETCH-LOGICAL-c1654-e89326312beae8cf0c6d040ca56318a9e326b0a6e67608a8a484736ad363b4ed3</cites><orcidid>0000-0003-0068-9664 ; 0000-0003-0103-5267 ; 0000-0002-3930-8294 ; 0000-0002-7738-743X ; 0000-0003-3202-1351 ; 0000-0001-5194-4050 ; 0000-0001-7793-9276 ; 0000-0002-7919-421X ; 0000-0002-1945-2352 ; 0000000301035267 ; 000000027738743X ; 0000000151944050 ; 0000000300689664 ; 0000000239308294 ; 0000000332021351 ; 000000027919421X ; 0000000177939276 ; 0000000219452352</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,2862,2863,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1595174$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hao, Yu-Jie</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Feng, Yue</creatorcontrib><creatorcontrib>Ma, Xiao-Ming</creatorcontrib><creatorcontrib>Schwier, Eike F.</creatorcontrib><creatorcontrib>Arita, Masashi</creatorcontrib><creatorcontrib>Kumar, Shiv</creatorcontrib><creatorcontrib>Hu, Chaowei</creatorcontrib><creatorcontrib>Lu, Rui’e</creatorcontrib><creatorcontrib>Zeng, Meng</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Hao, Zhanyang</creatorcontrib><creatorcontrib>Sun, Hong-Yi</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Mei, Jiawei</creatorcontrib><creatorcontrib>Ni, Ni</creatorcontrib><creatorcontrib>Wu, Liusuo</creatorcontrib><creatorcontrib>Shimada, Kenya</creatorcontrib><creatorcontrib>Chen, Chaoyu</creatorcontrib><creatorcontrib>Liu, Qihang</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><title>Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4</title><title>Physical review. X</title><description>The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2Te4 exists inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk N´eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab initio calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results unveil the experimental topological properties of MnBi2Te4, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Physics</subject><issn>2160-3308</issn><issn>2160-3308</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkE9LAzEUxIMoWGo_gLfgfWuyyWazx1q1Fir-W8FbeE3ftpFtUpKt0G_vShV8l3nMDHP4EXLJ2ZhzJq6fN4f0il8f42rMZG_oEzLIuWKZEEyf_vvPySilT9afYlyW5YC8zGDXYkr0bR8bsEhvXQRLp8EjdZ5OfOcajDFsYe2xc5bWYRfasHYWWjr3ad9CFyJ99DeO5rRGKi_IWQNtwtGvDsn7_V09fcgWT7P5dLLILFeFzFBXIleC50sE1LZhVq2YZBaK3tRQYZ8uGShUpWIaNEgtS6FgJZRYSlyJIbk67obUOZOs69BubPAebWd4URW8lH2JH0s2hpQiNmYX3RbiwXBmftiZP3amMkd24htV0WIc</recordid><startdate>20191121</startdate><enddate>20191121</enddate><creator>Hao, Yu-Jie</creator><creator>Liu, Pengfei</creator><creator>Feng, Yue</creator><creator>Ma, Xiao-Ming</creator><creator>Schwier, Eike F.</creator><creator>Arita, Masashi</creator><creator>Kumar, Shiv</creator><creator>Hu, Chaowei</creator><creator>Lu, Rui’e</creator><creator>Zeng, Meng</creator><creator>Wang, Yuan</creator><creator>Hao, Zhanyang</creator><creator>Sun, Hong-Yi</creator><creator>Zhang, Ke</creator><creator>Mei, Jiawei</creator><creator>Ni, Ni</creator><creator>Wu, Liusuo</creator><creator>Shimada, Kenya</creator><creator>Chen, Chaoyu</creator><creator>Liu, Qihang</creator><creator>Liu, Chang</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0068-9664</orcidid><orcidid>https://orcid.org/0000-0003-0103-5267</orcidid><orcidid>https://orcid.org/0000-0002-3930-8294</orcidid><orcidid>https://orcid.org/0000-0002-7738-743X</orcidid><orcidid>https://orcid.org/0000-0003-3202-1351</orcidid><orcidid>https://orcid.org/0000-0001-5194-4050</orcidid><orcidid>https://orcid.org/0000-0001-7793-9276</orcidid><orcidid>https://orcid.org/0000-0002-7919-421X</orcidid><orcidid>https://orcid.org/0000-0002-1945-2352</orcidid><orcidid>https://orcid.org/0000000301035267</orcidid><orcidid>https://orcid.org/000000027738743X</orcidid><orcidid>https://orcid.org/0000000151944050</orcidid><orcidid>https://orcid.org/0000000300689664</orcidid><orcidid>https://orcid.org/0000000239308294</orcidid><orcidid>https://orcid.org/0000000332021351</orcidid><orcidid>https://orcid.org/000000027919421X</orcidid><orcidid>https://orcid.org/0000000177939276</orcidid><orcidid>https://orcid.org/0000000219452352</orcidid></search><sort><creationdate>20191121</creationdate><title>Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4</title><author>Hao, Yu-Jie ; Liu, Pengfei ; Feng, Yue ; Ma, Xiao-Ming ; Schwier, Eike F. ; Arita, Masashi ; Kumar, Shiv ; Hu, Chaowei ; Lu, Rui’e ; Zeng, Meng ; Wang, Yuan ; Hao, Zhanyang ; Sun, Hong-Yi ; Zhang, Ke ; Mei, Jiawei ; Ni, Ni ; Wu, Liusuo ; Shimada, Kenya ; Chen, Chaoyu ; Liu, Qihang ; Liu, Chang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1654-e89326312beae8cf0c6d040ca56318a9e326b0a6e67608a8a484736ad363b4ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Yu-Jie</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Feng, Yue</creatorcontrib><creatorcontrib>Ma, Xiao-Ming</creatorcontrib><creatorcontrib>Schwier, Eike F.</creatorcontrib><creatorcontrib>Arita, Masashi</creatorcontrib><creatorcontrib>Kumar, Shiv</creatorcontrib><creatorcontrib>Hu, Chaowei</creatorcontrib><creatorcontrib>Lu, Rui’e</creatorcontrib><creatorcontrib>Zeng, Meng</creatorcontrib><creatorcontrib>Wang, Yuan</creatorcontrib><creatorcontrib>Hao, Zhanyang</creatorcontrib><creatorcontrib>Sun, Hong-Yi</creatorcontrib><creatorcontrib>Zhang, Ke</creatorcontrib><creatorcontrib>Mei, Jiawei</creatorcontrib><creatorcontrib>Ni, Ni</creatorcontrib><creatorcontrib>Wu, Liusuo</creatorcontrib><creatorcontrib>Shimada, Kenya</creatorcontrib><creatorcontrib>Chen, Chaoyu</creatorcontrib><creatorcontrib>Liu, Qihang</creatorcontrib><creatorcontrib>Liu, Chang</creatorcontrib><creatorcontrib>Univ. of California, Los Angeles, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. X</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Yu-Jie</au><au>Liu, Pengfei</au><au>Feng, Yue</au><au>Ma, Xiao-Ming</au><au>Schwier, Eike F.</au><au>Arita, Masashi</au><au>Kumar, Shiv</au><au>Hu, Chaowei</au><au>Lu, Rui’e</au><au>Zeng, Meng</au><au>Wang, Yuan</au><au>Hao, Zhanyang</au><au>Sun, Hong-Yi</au><au>Zhang, Ke</au><au>Mei, Jiawei</au><au>Ni, Ni</au><au>Wu, Liusuo</au><au>Shimada, Kenya</au><au>Chen, Chaoyu</au><au>Liu, Qihang</au><au>Liu, Chang</au><aucorp>Univ. of California, Los Angeles, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4</atitle><jtitle>Physical review. X</jtitle><date>2019-11-21</date><risdate>2019</risdate><volume>9</volume><issue>4</issue><artnum>041038</artnum><issn>2160-3308</issn><eissn>2160-3308</eissn><abstract>The recently discovered antiferromagnetic topological insulators in the Mn-Bi-Te family with intrinsic magnetic ordering have rapidly drawn broad interest since its cleaved surface state is believed to be gapped, hosting the unprecedented axion states with a half-integer quantum Hall effect. Here, however, we show unambiguously by using high-resolution angle resolved photoemission spectroscopy that a gapless Dirac cone at the (0001) surface of MnBi2Te4 exists inside the bulk band gap. Such an unexpected surface state remains unchanged across the bulk N´eel temperature, and is even robust against severe surface degradation, indicating additional topological protection. Through symmetry analysis and ab initio calculations we consider different types of surface reconstruction of the magnetic moments as possible origins giving rise to such linear dispersion. Our results unveil the experimental topological properties of MnBi2Te4, revealing that the intrinsic magnetic topological insulator hosts a rich platform to realize various topological phases by tuning the magnetic or structural configurations, and thus push forward the comprehensive understanding of magnetic topological materials.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevX.9.041038</doi><orcidid>https://orcid.org/0000-0003-0068-9664</orcidid><orcidid>https://orcid.org/0000-0003-0103-5267</orcidid><orcidid>https://orcid.org/0000-0002-3930-8294</orcidid><orcidid>https://orcid.org/0000-0002-7738-743X</orcidid><orcidid>https://orcid.org/0000-0003-3202-1351</orcidid><orcidid>https://orcid.org/0000-0001-5194-4050</orcidid><orcidid>https://orcid.org/0000-0001-7793-9276</orcidid><orcidid>https://orcid.org/0000-0002-7919-421X</orcidid><orcidid>https://orcid.org/0000-0002-1945-2352</orcidid><orcidid>https://orcid.org/0000000301035267</orcidid><orcidid>https://orcid.org/000000027738743X</orcidid><orcidid>https://orcid.org/0000000151944050</orcidid><orcidid>https://orcid.org/0000000300689664</orcidid><orcidid>https://orcid.org/0000000239308294</orcidid><orcidid>https://orcid.org/0000000332021351</orcidid><orcidid>https://orcid.org/000000027919421X</orcidid><orcidid>https://orcid.org/0000000177939276</orcidid><orcidid>https://orcid.org/0000000219452352</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2160-3308
ispartof Physical review. X, 2019-11, Vol.9 (4), Article 041038
issn 2160-3308
2160-3308
language eng
recordid cdi_osti_scitechconnect_1595174
source American Physical Society Journals; Directory of Open Access Journals; EZB Electronic Journals Library
subjects CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Physics
title Gapless Surface Dirac Cone in Antiferromagnetic Topological Insulator MnBi 2 Te 4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gapless%20Surface%20Dirac%20Cone%20in%20Antiferromagnetic%20Topological%20Insulator%20MnBi%202%20Te%204&rft.jtitle=Physical%20review.%20X&rft.au=Hao,%20Yu-Jie&rft.aucorp=Univ.%20of%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2019-11-21&rft.volume=9&rft.issue=4&rft.artnum=041038&rft.issn=2160-3308&rft.eissn=2160-3308&rft_id=info:doi/10.1103/PhysRevX.9.041038&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevX_9_041038%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true