Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries
Vanadium-based compounds have been widely used as electrode materials in aqueous zinc ion batteries (ZIBs) due to the multiple oxidation states of vanadium and their open framework structure. However, the solubility of vanadium in aqueous electrolytes and the formation of byproducts during the charg...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2019-12, Vol.4 (12), p.2776-2781 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2781 |
---|---|
container_issue | 12 |
container_start_page | 2776 |
container_title | ACS energy letters |
container_volume | 4 |
creator | Guo, Jing Ming, Jun Lei, Yongjiu Zhang, Wenli Xia, Chuan Cui, Yi Alshareef, Husam N |
description | Vanadium-based compounds have been widely used as electrode materials in aqueous zinc ion batteries (ZIBs) due to the multiple oxidation states of vanadium and their open framework structure. However, the solubility of vanadium in aqueous electrolytes and the formation of byproducts during the charge/discharge process cause severe capacity fading and limit cycle life. Here, we report an ultrathin HfO2 film as an artificial solid electrolyte interphase (SEI) that is uniformly and conformally deposited by atomic layer deposition (ALD). The inactive hafnium(IV) oxide (HfO2) film not only decreases byproduct (Zn4SO4(OH)6·xH2O) formation on the surface of Zn3V2O7(OH)2·2H2O (ZVO) but also suppresses the ZVO cathode dissolution in the electrolyte. As a result, the obtained HfO2-coated ZVO cathodes deliver higher capacity and better cycle life (227 mAh g–1@100 mA g–1, 90% retention over 100 cycles) compared with pristine ZVO (170 mAh g–1@100 mA g–1, 45% retention over 100 cycles). A mechanistic investigation of the role of HfO2 is presented, along with data showing that our method constitutes a general strategy for other cathodes to enhance their performance in aqueous ZIBs. |
doi_str_mv | 10.1021/acsenergylett.9b02029 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1595139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a448335438</sourcerecordid><originalsourceid>FETCH-LOGICAL-a435t-e2020526f36edb18bf981139921c926118c23ea3a2544466f2801e54fcc9131e3</originalsourceid><addsrcrecordid>eNqFUE1LAzEQXUTBov0JQvC-NZPdLJtjrVULBcHqxcuSZidtypqsSfbQk3_dlPagJ5nDDPM-4L0suwE6AcrgTqqAFv1m32GME7GmjDJxlo1YUdO8BsHPf92X2TiEHaUUqpqnGWXfUx-NNsrIjqxcZ1oy71BF77p9RLKwEX2_lQGJdp6shr73GIKxm3R7LRWSV5QqGmcDkbYlMxm3rkXyYEJw3XAAiLFk-jWgGwL5MFaRRfrdy5icDYbr7ELLLuD4tK-y98f52-w5X748LWbTZS7LgsccUyrKWaWLCts11GstaoBCCAZKsAqgVqxAWUjGy7KsKs1qCshLrZSAArC4ym6Pvi5E0wRlIqqtctamsA1wwZNZIvEjSXkXgkfd9N58Sr9vgDaHtps_bTentpMOjroENzs3eJui_KP5AbLKiXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries</title><source>American Chemical Society Journals</source><creator>Guo, Jing ; Ming, Jun ; Lei, Yongjiu ; Zhang, Wenli ; Xia, Chuan ; Cui, Yi ; Alshareef, Husam N</creator><creatorcontrib>Guo, Jing ; Ming, Jun ; Lei, Yongjiu ; Zhang, Wenli ; Xia, Chuan ; Cui, Yi ; Alshareef, Husam N ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>Vanadium-based compounds have been widely used as electrode materials in aqueous zinc ion batteries (ZIBs) due to the multiple oxidation states of vanadium and their open framework structure. However, the solubility of vanadium in aqueous electrolytes and the formation of byproducts during the charge/discharge process cause severe capacity fading and limit cycle life. Here, we report an ultrathin HfO2 film as an artificial solid electrolyte interphase (SEI) that is uniformly and conformally deposited by atomic layer deposition (ALD). The inactive hafnium(IV) oxide (HfO2) film not only decreases byproduct (Zn4SO4(OH)6·xH2O) formation on the surface of Zn3V2O7(OH)2·2H2O (ZVO) but also suppresses the ZVO cathode dissolution in the electrolyte. As a result, the obtained HfO2-coated ZVO cathodes deliver higher capacity and better cycle life (227 mAh g–1@100 mA g–1, 90% retention over 100 cycles) compared with pristine ZVO (170 mAh g–1@100 mA g–1, 45% retention over 100 cycles). A mechanistic investigation of the role of HfO2 is presented, along with data showing that our method constitutes a general strategy for other cathodes to enhance their performance in aqueous ZIBs.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.9b02029</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE</subject><ispartof>ACS energy letters, 2019-12, Vol.4 (12), p.2776-2781</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a435t-e2020526f36edb18bf981139921c926118c23ea3a2544466f2801e54fcc9131e3</citedby><cites>FETCH-LOGICAL-a435t-e2020526f36edb18bf981139921c926118c23ea3a2544466f2801e54fcc9131e3</cites><orcidid>0000-0002-6103-6352 ; 0000-0001-9561-5718 ; 0000-0003-4526-159X ; 0000-0001-5029-2142 ; 0000-0001-9539-4353 ; 0000-0002-6781-2826 ; 000000034526159X ; 0000000261036352 ; 0000000150292142 ; 0000000195615718 ; 0000000267812826 ; 0000000195394353</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.9b02029$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.9b02029$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1595139$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Ming, Jun</creatorcontrib><creatorcontrib>Lei, Yongjiu</creatorcontrib><creatorcontrib>Zhang, Wenli</creatorcontrib><creatorcontrib>Xia, Chuan</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Alshareef, Husam N</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Vanadium-based compounds have been widely used as electrode materials in aqueous zinc ion batteries (ZIBs) due to the multiple oxidation states of vanadium and their open framework structure. However, the solubility of vanadium in aqueous electrolytes and the formation of byproducts during the charge/discharge process cause severe capacity fading and limit cycle life. Here, we report an ultrathin HfO2 film as an artificial solid electrolyte interphase (SEI) that is uniformly and conformally deposited by atomic layer deposition (ALD). The inactive hafnium(IV) oxide (HfO2) film not only decreases byproduct (Zn4SO4(OH)6·xH2O) formation on the surface of Zn3V2O7(OH)2·2H2O (ZVO) but also suppresses the ZVO cathode dissolution in the electrolyte. As a result, the obtained HfO2-coated ZVO cathodes deliver higher capacity and better cycle life (227 mAh g–1@100 mA g–1, 90% retention over 100 cycles) compared with pristine ZVO (170 mAh g–1@100 mA g–1, 45% retention over 100 cycles). A mechanistic investigation of the role of HfO2 is presented, along with data showing that our method constitutes a general strategy for other cathodes to enhance their performance in aqueous ZIBs.</description><subject>ENERGY STORAGE</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEQXUTBov0JQvC-NZPdLJtjrVULBcHqxcuSZidtypqsSfbQk3_dlPagJ5nDDPM-4L0suwE6AcrgTqqAFv1m32GME7GmjDJxlo1YUdO8BsHPf92X2TiEHaUUqpqnGWXfUx-NNsrIjqxcZ1oy71BF77p9RLKwEX2_lQGJdp6shr73GIKxm3R7LRWSV5QqGmcDkbYlMxm3rkXyYEJw3XAAiLFk-jWgGwL5MFaRRfrdy5icDYbr7ELLLuD4tK-y98f52-w5X748LWbTZS7LgsccUyrKWaWLCts11GstaoBCCAZKsAqgVqxAWUjGy7KsKs1qCshLrZSAArC4ym6Pvi5E0wRlIqqtctamsA1wwZNZIvEjSXkXgkfd9N58Sr9vgDaHtps_bTentpMOjroENzs3eJui_KP5AbLKiXQ</recordid><startdate>20191213</startdate><enddate>20191213</enddate><creator>Guo, Jing</creator><creator>Ming, Jun</creator><creator>Lei, Yongjiu</creator><creator>Zhang, Wenli</creator><creator>Xia, Chuan</creator><creator>Cui, Yi</creator><creator>Alshareef, Husam N</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6103-6352</orcidid><orcidid>https://orcid.org/0000-0001-9561-5718</orcidid><orcidid>https://orcid.org/0000-0003-4526-159X</orcidid><orcidid>https://orcid.org/0000-0001-5029-2142</orcidid><orcidid>https://orcid.org/0000-0001-9539-4353</orcidid><orcidid>https://orcid.org/0000-0002-6781-2826</orcidid><orcidid>https://orcid.org/000000034526159X</orcidid><orcidid>https://orcid.org/0000000261036352</orcidid><orcidid>https://orcid.org/0000000150292142</orcidid><orcidid>https://orcid.org/0000000195615718</orcidid><orcidid>https://orcid.org/0000000267812826</orcidid><orcidid>https://orcid.org/0000000195394353</orcidid></search><sort><creationdate>20191213</creationdate><title>Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries</title><author>Guo, Jing ; Ming, Jun ; Lei, Yongjiu ; Zhang, Wenli ; Xia, Chuan ; Cui, Yi ; Alshareef, Husam N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a435t-e2020526f36edb18bf981139921c926118c23ea3a2544466f2801e54fcc9131e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ENERGY STORAGE</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Jing</creatorcontrib><creatorcontrib>Ming, Jun</creatorcontrib><creatorcontrib>Lei, Yongjiu</creatorcontrib><creatorcontrib>Zhang, Wenli</creatorcontrib><creatorcontrib>Xia, Chuan</creatorcontrib><creatorcontrib>Cui, Yi</creatorcontrib><creatorcontrib>Alshareef, Husam N</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Jing</au><au>Ming, Jun</au><au>Lei, Yongjiu</au><au>Zhang, Wenli</au><au>Xia, Chuan</au><au>Cui, Yi</au><au>Alshareef, Husam N</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2019-12-13</date><risdate>2019</risdate><volume>4</volume><issue>12</issue><spage>2776</spage><epage>2781</epage><pages>2776-2781</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Vanadium-based compounds have been widely used as electrode materials in aqueous zinc ion batteries (ZIBs) due to the multiple oxidation states of vanadium and their open framework structure. However, the solubility of vanadium in aqueous electrolytes and the formation of byproducts during the charge/discharge process cause severe capacity fading and limit cycle life. Here, we report an ultrathin HfO2 film as an artificial solid electrolyte interphase (SEI) that is uniformly and conformally deposited by atomic layer deposition (ALD). The inactive hafnium(IV) oxide (HfO2) film not only decreases byproduct (Zn4SO4(OH)6·xH2O) formation on the surface of Zn3V2O7(OH)2·2H2O (ZVO) but also suppresses the ZVO cathode dissolution in the electrolyte. As a result, the obtained HfO2-coated ZVO cathodes deliver higher capacity and better cycle life (227 mAh g–1@100 mA g–1, 90% retention over 100 cycles) compared with pristine ZVO (170 mAh g–1@100 mA g–1, 45% retention over 100 cycles). A mechanistic investigation of the role of HfO2 is presented, along with data showing that our method constitutes a general strategy for other cathodes to enhance their performance in aqueous ZIBs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.9b02029</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6103-6352</orcidid><orcidid>https://orcid.org/0000-0001-9561-5718</orcidid><orcidid>https://orcid.org/0000-0003-4526-159X</orcidid><orcidid>https://orcid.org/0000-0001-5029-2142</orcidid><orcidid>https://orcid.org/0000-0001-9539-4353</orcidid><orcidid>https://orcid.org/0000-0002-6781-2826</orcidid><orcidid>https://orcid.org/000000034526159X</orcidid><orcidid>https://orcid.org/0000000261036352</orcidid><orcidid>https://orcid.org/0000000150292142</orcidid><orcidid>https://orcid.org/0000000195615718</orcidid><orcidid>https://orcid.org/0000000267812826</orcidid><orcidid>https://orcid.org/0000000195394353</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2019-12, Vol.4 (12), p.2776-2781 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_osti_scitechconnect_1595139 |
source | American Chemical Society Journals |
subjects | ENERGY STORAGE |
title | Artificial Solid Electrolyte Interphase for Suppressing Surface Reactions and Cathode Dissolution in Aqueous Zinc Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Solid%20Electrolyte%20Interphase%20for%20Suppressing%20Surface%20Reactions%20and%20Cathode%20Dissolution%20in%20Aqueous%20Zinc%20Ion%20Batteries&rft.jtitle=ACS%20energy%20letters&rft.au=Guo,%20Jing&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-12-13&rft.volume=4&rft.issue=12&rft.spage=2776&rft.epage=2781&rft.pages=2776-2781&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.9b02029&rft_dat=%3Cacs_osti_%3Ea448335438%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |