Decomposing electronic and lattice contributions in optical pump – X-ray probe transient inner-shell absorption spectroscopy of CuO

Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Faraday discussions 2019-01, Vol.216
Hauptverfasser: Mahl, Johannes, Neppl, Stefan, Roth, Friedrich, Borgwardt, Mario, Saladrigas, Catherine, Toulson, Benjamin, Cooper, Jason, Rahman, Tahiyat, Bluhm, Hendrik, Guo, Jinghua, Yang, Wanli, Huse, Nils, Eberhardt, Wolfgang, Gessner, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Faraday discussions
container_volume 216
creator Mahl, Johannes
Neppl, Stefan
Roth, Friedrich
Borgwardt, Mario
Saladrigas, Catherine
Toulson, Benjamin
Cooper, Jason
Rahman, Tahiyat
Bluhm, Hendrik
Guo, Jinghua
Yang, Wanli
Huse, Nils
Eberhardt, Wolfgang
Gessner, Oliver
description Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectra at pump-probe time-delays ≥150 ps are dominated by lattice heating effects. Insight into the temporal evolution of lattice temperature profiles on timescales up to 100s of nanoseconds after laser excitation are reported, on an absolute temperature scale, with a temporal sensitivity and a spatial selectivity on the order of 10s of picoseconds and 10s of nanometers, respectively, effectively establishing an "ultrafast thermometer". In particular, for the 532 nm experiment at ~5 mJ cm-2 fluence, both the initial sample temperature and its dynamic evolution are well captured by a one-dimensional thermal energy deposition and diffusion model. The thermal conductivity k = (1.3 ± 0.4) W m-1 K-1 derived from this model is in good agreement with the literature value for CuO powder, kpowder = 1.013 W m-1 K-1. For 355 nm excitation, a quantitative analysis of the experiments is hampered by the large temperature gradients within the probed sample volume owing to the small UV penetration depth. The impact of the findings on mitigating or utilizing photoinduced lattice temperature changes in future X-ray free electron laser (XFEL) experiments is discussed.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1594925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1594925</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15949253</originalsourceid><addsrcrecordid>eNqNTjtOA0EMHSEiET53sOhH2iS7K7YOIDoaCrpodnCIo4k9GnuLdDScgBtyEiaIA1C9J7-P35mbL1Z967t2uDs_8W7wfd82F-5Sdd80TV_Vufu8xyiHLEr8DpgwWhGmCIHfIAUzighR2AqNk5GwAjFIrveQIE-HDN8fX_DqSzhCLjIiWAmshGzVyVi87jAlCKNKyacG0Pz7RaPkI8gW1tPztZttQ1K8-cMrd_v48LJ-8qJGG41kGHd1BtfkZtEN7bDsVv8y_QDXtVXk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Decomposing electronic and lattice contributions in optical pump – X-ray probe transient inner-shell absorption spectroscopy of CuO</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Mahl, Johannes ; Neppl, Stefan ; Roth, Friedrich ; Borgwardt, Mario ; Saladrigas, Catherine ; Toulson, Benjamin ; Cooper, Jason ; Rahman, Tahiyat ; Bluhm, Hendrik ; Guo, Jinghua ; Yang, Wanli ; Huse, Nils ; Eberhardt, Wolfgang ; Gessner, Oliver</creator><creatorcontrib>Mahl, Johannes ; Neppl, Stefan ; Roth, Friedrich ; Borgwardt, Mario ; Saladrigas, Catherine ; Toulson, Benjamin ; Cooper, Jason ; Rahman, Tahiyat ; Bluhm, Hendrik ; Guo, Jinghua ; Yang, Wanli ; Huse, Nils ; Eberhardt, Wolfgang ; Gessner, Oliver ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectra at pump-probe time-delays ≥150 ps are dominated by lattice heating effects. Insight into the temporal evolution of lattice temperature profiles on timescales up to 100s of nanoseconds after laser excitation are reported, on an absolute temperature scale, with a temporal sensitivity and a spatial selectivity on the order of 10s of picoseconds and 10s of nanometers, respectively, effectively establishing an "ultrafast thermometer". In particular, for the 532 nm experiment at ~5 mJ cm-2 fluence, both the initial sample temperature and its dynamic evolution are well captured by a one-dimensional thermal energy deposition and diffusion model. The thermal conductivity k = (1.3 ± 0.4) W m-1 K-1 derived from this model is in good agreement with the literature value for CuO powder, kpowder = 1.013 W m-1 K-1. For 355 nm excitation, a quantitative analysis of the experiments is hampered by the large temperature gradients within the probed sample volume owing to the small UV penetration depth. The impact of the findings on mitigating or utilizing photoinduced lattice temperature changes in future X-ray free electron laser (XFEL) experiments is discussed.</description><identifier>ISSN: 1359-6640</identifier><identifier>EISSN: 1364-5498</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Faraday discussions, 2019-01, Vol.216</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000347092822 ; 0000000244293955 ; 0000000279534229 ; 0000000232817600 ; 0000000306668063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1594925$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mahl, Johannes</creatorcontrib><creatorcontrib>Neppl, Stefan</creatorcontrib><creatorcontrib>Roth, Friedrich</creatorcontrib><creatorcontrib>Borgwardt, Mario</creatorcontrib><creatorcontrib>Saladrigas, Catherine</creatorcontrib><creatorcontrib>Toulson, Benjamin</creatorcontrib><creatorcontrib>Cooper, Jason</creatorcontrib><creatorcontrib>Rahman, Tahiyat</creatorcontrib><creatorcontrib>Bluhm, Hendrik</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Huse, Nils</creatorcontrib><creatorcontrib>Eberhardt, Wolfgang</creatorcontrib><creatorcontrib>Gessner, Oliver</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Decomposing electronic and lattice contributions in optical pump – X-ray probe transient inner-shell absorption spectroscopy of CuO</title><title>Faraday discussions</title><description>Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectra at pump-probe time-delays ≥150 ps are dominated by lattice heating effects. Insight into the temporal evolution of lattice temperature profiles on timescales up to 100s of nanoseconds after laser excitation are reported, on an absolute temperature scale, with a temporal sensitivity and a spatial selectivity on the order of 10s of picoseconds and 10s of nanometers, respectively, effectively establishing an "ultrafast thermometer". In particular, for the 532 nm experiment at ~5 mJ cm-2 fluence, both the initial sample temperature and its dynamic evolution are well captured by a one-dimensional thermal energy deposition and diffusion model. The thermal conductivity k = (1.3 ± 0.4) W m-1 K-1 derived from this model is in good agreement with the literature value for CuO powder, kpowder = 1.013 W m-1 K-1. For 355 nm excitation, a quantitative analysis of the experiments is hampered by the large temperature gradients within the probed sample volume owing to the small UV penetration depth. The impact of the findings on mitigating or utilizing photoinduced lattice temperature changes in future X-ray free electron laser (XFEL) experiments is discussed.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>1359-6640</issn><issn>1364-5498</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNTjtOA0EMHSEiET53sOhH2iS7K7YOIDoaCrpodnCIo4k9GnuLdDScgBtyEiaIA1C9J7-P35mbL1Z967t2uDs_8W7wfd82F-5Sdd80TV_Vufu8xyiHLEr8DpgwWhGmCIHfIAUzighR2AqNk5GwAjFIrveQIE-HDN8fX_DqSzhCLjIiWAmshGzVyVi87jAlCKNKyacG0Pz7RaPkI8gW1tPztZttQ1K8-cMrd_v48LJ-8qJGG41kGHd1BtfkZtEN7bDsVv8y_QDXtVXk</recordid><startdate>20190114</startdate><enddate>20190114</enddate><creator>Mahl, Johannes</creator><creator>Neppl, Stefan</creator><creator>Roth, Friedrich</creator><creator>Borgwardt, Mario</creator><creator>Saladrigas, Catherine</creator><creator>Toulson, Benjamin</creator><creator>Cooper, Jason</creator><creator>Rahman, Tahiyat</creator><creator>Bluhm, Hendrik</creator><creator>Guo, Jinghua</creator><creator>Yang, Wanli</creator><creator>Huse, Nils</creator><creator>Eberhardt, Wolfgang</creator><creator>Gessner, Oliver</creator><general>Royal Society of Chemistry</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000347092822</orcidid><orcidid>https://orcid.org/0000000244293955</orcidid><orcidid>https://orcid.org/0000000279534229</orcidid><orcidid>https://orcid.org/0000000232817600</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid></search><sort><creationdate>20190114</creationdate><title>Decomposing electronic and lattice contributions in optical pump – X-ray probe transient inner-shell absorption spectroscopy of CuO</title><author>Mahl, Johannes ; Neppl, Stefan ; Roth, Friedrich ; Borgwardt, Mario ; Saladrigas, Catherine ; Toulson, Benjamin ; Cooper, Jason ; Rahman, Tahiyat ; Bluhm, Hendrik ; Guo, Jinghua ; Yang, Wanli ; Huse, Nils ; Eberhardt, Wolfgang ; Gessner, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15949253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahl, Johannes</creatorcontrib><creatorcontrib>Neppl, Stefan</creatorcontrib><creatorcontrib>Roth, Friedrich</creatorcontrib><creatorcontrib>Borgwardt, Mario</creatorcontrib><creatorcontrib>Saladrigas, Catherine</creatorcontrib><creatorcontrib>Toulson, Benjamin</creatorcontrib><creatorcontrib>Cooper, Jason</creatorcontrib><creatorcontrib>Rahman, Tahiyat</creatorcontrib><creatorcontrib>Bluhm, Hendrik</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Huse, Nils</creatorcontrib><creatorcontrib>Eberhardt, Wolfgang</creatorcontrib><creatorcontrib>Gessner, Oliver</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Faraday discussions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahl, Johannes</au><au>Neppl, Stefan</au><au>Roth, Friedrich</au><au>Borgwardt, Mario</au><au>Saladrigas, Catherine</au><au>Toulson, Benjamin</au><au>Cooper, Jason</au><au>Rahman, Tahiyat</au><au>Bluhm, Hendrik</au><au>Guo, Jinghua</au><au>Yang, Wanli</au><au>Huse, Nils</au><au>Eberhardt, Wolfgang</au><au>Gessner, Oliver</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decomposing electronic and lattice contributions in optical pump – X-ray probe transient inner-shell absorption spectroscopy of CuO</atitle><jtitle>Faraday discussions</jtitle><date>2019-01-14</date><risdate>2019</risdate><volume>216</volume><issn>1359-6640</issn><eissn>1364-5498</eissn><abstract>Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectra at pump-probe time-delays ≥150 ps are dominated by lattice heating effects. Insight into the temporal evolution of lattice temperature profiles on timescales up to 100s of nanoseconds after laser excitation are reported, on an absolute temperature scale, with a temporal sensitivity and a spatial selectivity on the order of 10s of picoseconds and 10s of nanometers, respectively, effectively establishing an "ultrafast thermometer". In particular, for the 532 nm experiment at ~5 mJ cm-2 fluence, both the initial sample temperature and its dynamic evolution are well captured by a one-dimensional thermal energy deposition and diffusion model. The thermal conductivity k = (1.3 ± 0.4) W m-1 K-1 derived from this model is in good agreement with the literature value for CuO powder, kpowder = 1.013 W m-1 K-1. For 355 nm excitation, a quantitative analysis of the experiments is hampered by the large temperature gradients within the probed sample volume owing to the small UV penetration depth. The impact of the findings on mitigating or utilizing photoinduced lattice temperature changes in future X-ray free electron laser (XFEL) experiments is discussed.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><orcidid>https://orcid.org/0000000347092822</orcidid><orcidid>https://orcid.org/0000000244293955</orcidid><orcidid>https://orcid.org/0000000279534229</orcidid><orcidid>https://orcid.org/0000000232817600</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6640
ispartof Faraday discussions, 2019-01, Vol.216
issn 1359-6640
1364-5498
language eng
recordid cdi_osti_scitechconnect_1594925
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Decomposing electronic and lattice contributions in optical pump – X-ray probe transient inner-shell absorption spectroscopy of CuO
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T00%3A26%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decomposing%20electronic%20and%20lattice%20contributions%20in%20optical%20pump%20%E2%80%93%20X-ray%20probe%20transient%20inner-shell%20absorption%20spectroscopy%20of%20CuO&rft.jtitle=Faraday%20discussions&rft.au=Mahl,%20Johannes&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-01-14&rft.volume=216&rft.issn=1359-6640&rft.eissn=1364-5498&rft_id=info:doi/&rft_dat=%3Costi%3E1594925%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true