Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries
The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2019-03, Vol.141 (12), p.4900-4907 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4907 |
---|---|
container_issue | 12 |
container_start_page | 4900 |
container_title | Journal of the American Chemical Society |
container_volume | 141 |
creator | Piao, Jun-Yu Gu, Lin Wei, Zengxi Ma, Jianmin Wu, Jinpeng Yang, Wanli Gong, Yue Sun, Yong-Gang Duan, Shu-Yi Tao, Xian-Sen Bin, De-Shan Cao, An-Min Wan, Li-Jun |
description | The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries. |
doi_str_mv | 10.1021/jacs.8b13438 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1594912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187955187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-6164b840e34399218a1c512bd61b08c1ce6443d74971bb11c60054db8e910f9a3</originalsourceid><addsrcrecordid>eNptkUFv1DAQhS0EotvCjTOyOHEgxeM4iX2kq9JWWgRS4WzZzqTxKhsX2zmUX4-jXeDCxSPrffNGM4-QN8AugXH4uDcuXUoLtajlM7KBhrOqAd4-JxvGGK862dZn5DylffkKLuElOauZ5B0A35Dx22gS0m2YcwwTDTO9X-JgHNIhRJpHpPfZWD_5Xyb7ooaB3vqHkV7PGB-e6NbkMfRIv5iM0ZsprcDO59EvB3pX-CuTVwXTK_JiKDq-PtUL8uPz9fftbbX7enO3_bSrjFA8Vy20wkrBsKyjFAdpwJVtbN-CZdKBw1aIuu-E6sBaANcy1ojeSlTABmXqC_Lu6BtS9jo5n9GNLswzuqyhUUIBL9D7I_QYw88FU9YHnxxOk5kxLEmXuZ1qmvIW9MMRdTGkFHHQj9EfTHzSwPQagF4D0KcACv725LzYA_Z_4T8X_zd67dqHJc7lGv_3-g2ul4zG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187955187</pqid></control><display><type>article</type><title>Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries</title><source>ACS Publications</source><creator>Piao, Jun-Yu ; Gu, Lin ; Wei, Zengxi ; Ma, Jianmin ; Wu, Jinpeng ; Yang, Wanli ; Gong, Yue ; Sun, Yong-Gang ; Duan, Shu-Yi ; Tao, Xian-Sen ; Bin, De-Shan ; Cao, An-Min ; Wan, Li-Jun</creator><creatorcontrib>Piao, Jun-Yu ; Gu, Lin ; Wei, Zengxi ; Ma, Jianmin ; Wu, Jinpeng ; Yang, Wanli ; Gong, Yue ; Sun, Yong-Gang ; Duan, Shu-Yi ; Tao, Xian-Sen ; Bin, De-Shan ; Cao, An-Min ; Wan, Li-Jun ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b13438</identifier><identifier>PMID: 30827112</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrodes ; ENERGY STORAGE ; Layers ; Oxides ; Phase transitions ; Spinel</subject><ispartof>Journal of the American Chemical Society, 2019-03, Vol.141 (12), p.4900-4907</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-6164b840e34399218a1c512bd61b08c1ce6443d74971bb11c60054db8e910f9a3</citedby><cites>FETCH-LOGICAL-a492t-6164b840e34399218a1c512bd61b08c1ce6443d74971bb11c60054db8e910f9a3</cites><orcidid>0000-0001-9280-4337 ; 0000-0003-0666-8063 ; 0000-0002-7504-031X ; 0000-0002-0656-0936 ; 000000027504031X ; 0000000306668063 ; 0000000192804337 ; 0000000206560936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b13438$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b13438$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30827112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1594912$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Piao, Jun-Yu</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wei, Zengxi</creatorcontrib><creatorcontrib>Ma, Jianmin</creatorcontrib><creatorcontrib>Wu, Jinpeng</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Gong, Yue</creatorcontrib><creatorcontrib>Sun, Yong-Gang</creatorcontrib><creatorcontrib>Duan, Shu-Yi</creatorcontrib><creatorcontrib>Tao, Xian-Sen</creatorcontrib><creatorcontrib>Bin, De-Shan</creatorcontrib><creatorcontrib>Cao, An-Min</creatorcontrib><creatorcontrib>Wan, Li-Jun</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries.</description><subject>Electrodes</subject><subject>ENERGY STORAGE</subject><subject>Layers</subject><subject>Oxides</subject><subject>Phase transitions</subject><subject>Spinel</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkUFv1DAQhS0EotvCjTOyOHEgxeM4iX2kq9JWWgRS4WzZzqTxKhsX2zmUX4-jXeDCxSPrffNGM4-QN8AugXH4uDcuXUoLtajlM7KBhrOqAd4-JxvGGK862dZn5DylffkKLuElOauZ5B0A35Dx22gS0m2YcwwTDTO9X-JgHNIhRJpHpPfZWD_5Xyb7ooaB3vqHkV7PGB-e6NbkMfRIv5iM0ZsprcDO59EvB3pX-CuTVwXTK_JiKDq-PtUL8uPz9fftbbX7enO3_bSrjFA8Vy20wkrBsKyjFAdpwJVtbN-CZdKBw1aIuu-E6sBaANcy1ojeSlTABmXqC_Lu6BtS9jo5n9GNLswzuqyhUUIBL9D7I_QYw88FU9YHnxxOk5kxLEmXuZ1qmvIW9MMRdTGkFHHQj9EfTHzSwPQagF4D0KcACv725LzYA_Z_4T8X_zd67dqHJc7lGv_3-g2ul4zG</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Piao, Jun-Yu</creator><creator>Gu, Lin</creator><creator>Wei, Zengxi</creator><creator>Ma, Jianmin</creator><creator>Wu, Jinpeng</creator><creator>Yang, Wanli</creator><creator>Gong, Yue</creator><creator>Sun, Yong-Gang</creator><creator>Duan, Shu-Yi</creator><creator>Tao, Xian-Sen</creator><creator>Bin, De-Shan</creator><creator>Cao, An-Min</creator><creator>Wan, Li-Jun</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9280-4337</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><orcidid>https://orcid.org/0000-0002-0656-0936</orcidid><orcidid>https://orcid.org/000000027504031X</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000192804337</orcidid><orcidid>https://orcid.org/0000000206560936</orcidid></search><sort><creationdate>20190327</creationdate><title>Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries</title><author>Piao, Jun-Yu ; Gu, Lin ; Wei, Zengxi ; Ma, Jianmin ; Wu, Jinpeng ; Yang, Wanli ; Gong, Yue ; Sun, Yong-Gang ; Duan, Shu-Yi ; Tao, Xian-Sen ; Bin, De-Shan ; Cao, An-Min ; Wan, Li-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-6164b840e34399218a1c512bd61b08c1ce6443d74971bb11c60054db8e910f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electrodes</topic><topic>ENERGY STORAGE</topic><topic>Layers</topic><topic>Oxides</topic><topic>Phase transitions</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piao, Jun-Yu</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wei, Zengxi</creatorcontrib><creatorcontrib>Ma, Jianmin</creatorcontrib><creatorcontrib>Wu, Jinpeng</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Gong, Yue</creatorcontrib><creatorcontrib>Sun, Yong-Gang</creatorcontrib><creatorcontrib>Duan, Shu-Yi</creatorcontrib><creatorcontrib>Tao, Xian-Sen</creatorcontrib><creatorcontrib>Bin, De-Shan</creatorcontrib><creatorcontrib>Cao, An-Min</creatorcontrib><creatorcontrib>Wan, Li-Jun</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piao, Jun-Yu</au><au>Gu, Lin</au><au>Wei, Zengxi</au><au>Ma, Jianmin</au><au>Wu, Jinpeng</au><au>Yang, Wanli</au><au>Gong, Yue</au><au>Sun, Yong-Gang</au><au>Duan, Shu-Yi</au><au>Tao, Xian-Sen</au><au>Bin, De-Shan</au><au>Cao, An-Min</au><au>Wan, Li-Jun</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>141</volume><issue>12</issue><spage>4900</spage><epage>4907</epage><pages>4900-4907</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30827112</pmid><doi>10.1021/jacs.8b13438</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9280-4337</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><orcidid>https://orcid.org/0000-0002-0656-0936</orcidid><orcidid>https://orcid.org/000000027504031X</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000192804337</orcidid><orcidid>https://orcid.org/0000000206560936</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2019-03, Vol.141 (12), p.4900-4907 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1594912 |
source | ACS Publications |
subjects | Electrodes ENERGY STORAGE Layers Oxides Phase transitions Spinel |
title | Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Control%20on%20Surface%20for%20the%20Stabilization%20of%20High%20Energy%20Cathode%20Materials%20of%20Lithium%20Ion%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Piao,%20Jun-Yu&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-03-27&rft.volume=141&rft.issue=12&rft.spage=4900&rft.epage=4907&rft.pages=4900-4907&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b13438&rft_dat=%3Cproquest_osti_%3E2187955187%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187955187&rft_id=info:pmid/30827112&rfr_iscdi=true |