Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries

The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-03, Vol.141 (12), p.4900-4907
Hauptverfasser: Piao, Jun-Yu, Gu, Lin, Wei, Zengxi, Ma, Jianmin, Wu, Jinpeng, Yang, Wanli, Gong, Yue, Sun, Yong-Gang, Duan, Shu-Yi, Tao, Xian-Sen, Bin, De-Shan, Cao, An-Min, Wan, Li-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4907
container_issue 12
container_start_page 4900
container_title Journal of the American Chemical Society
container_volume 141
creator Piao, Jun-Yu
Gu, Lin
Wei, Zengxi
Ma, Jianmin
Wu, Jinpeng
Yang, Wanli
Gong, Yue
Sun, Yong-Gang
Duan, Shu-Yi
Tao, Xian-Sen
Bin, De-Shan
Cao, An-Min
Wan, Li-Jun
description The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries.
doi_str_mv 10.1021/jacs.8b13438
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1594912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2187955187</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-6164b840e34399218a1c512bd61b08c1ce6443d74971bb11c60054db8e910f9a3</originalsourceid><addsrcrecordid>eNptkUFv1DAQhS0EotvCjTOyOHEgxeM4iX2kq9JWWgRS4WzZzqTxKhsX2zmUX4-jXeDCxSPrffNGM4-QN8AugXH4uDcuXUoLtajlM7KBhrOqAd4-JxvGGK862dZn5DylffkKLuElOauZ5B0A35Dx22gS0m2YcwwTDTO9X-JgHNIhRJpHpPfZWD_5Xyb7ooaB3vqHkV7PGB-e6NbkMfRIv5iM0ZsprcDO59EvB3pX-CuTVwXTK_JiKDq-PtUL8uPz9fftbbX7enO3_bSrjFA8Vy20wkrBsKyjFAdpwJVtbN-CZdKBw1aIuu-E6sBaANcy1ojeSlTABmXqC_Lu6BtS9jo5n9GNLswzuqyhUUIBL9D7I_QYw88FU9YHnxxOk5kxLEmXuZ1qmvIW9MMRdTGkFHHQj9EfTHzSwPQagF4D0KcACv725LzYA_Z_4T8X_zd67dqHJc7lGv_3-g2ul4zG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2187955187</pqid></control><display><type>article</type><title>Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries</title><source>ACS Publications</source><creator>Piao, Jun-Yu ; Gu, Lin ; Wei, Zengxi ; Ma, Jianmin ; Wu, Jinpeng ; Yang, Wanli ; Gong, Yue ; Sun, Yong-Gang ; Duan, Shu-Yi ; Tao, Xian-Sen ; Bin, De-Shan ; Cao, An-Min ; Wan, Li-Jun</creator><creatorcontrib>Piao, Jun-Yu ; Gu, Lin ; Wei, Zengxi ; Ma, Jianmin ; Wu, Jinpeng ; Yang, Wanli ; Gong, Yue ; Sun, Yong-Gang ; Duan, Shu-Yi ; Tao, Xian-Sen ; Bin, De-Shan ; Cao, An-Min ; Wan, Li-Jun ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b13438</identifier><identifier>PMID: 30827112</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrodes ; ENERGY STORAGE ; Layers ; Oxides ; Phase transitions ; Spinel</subject><ispartof>Journal of the American Chemical Society, 2019-03, Vol.141 (12), p.4900-4907</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-6164b840e34399218a1c512bd61b08c1ce6443d74971bb11c60054db8e910f9a3</citedby><cites>FETCH-LOGICAL-a492t-6164b840e34399218a1c512bd61b08c1ce6443d74971bb11c60054db8e910f9a3</cites><orcidid>0000-0001-9280-4337 ; 0000-0003-0666-8063 ; 0000-0002-7504-031X ; 0000-0002-0656-0936 ; 000000027504031X ; 0000000306668063 ; 0000000192804337 ; 0000000206560936</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b13438$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b13438$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30827112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1594912$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Piao, Jun-Yu</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wei, Zengxi</creatorcontrib><creatorcontrib>Ma, Jianmin</creatorcontrib><creatorcontrib>Wu, Jinpeng</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Gong, Yue</creatorcontrib><creatorcontrib>Sun, Yong-Gang</creatorcontrib><creatorcontrib>Duan, Shu-Yi</creatorcontrib><creatorcontrib>Tao, Xian-Sen</creatorcontrib><creatorcontrib>Bin, De-Shan</creatorcontrib><creatorcontrib>Cao, An-Min</creatorcontrib><creatorcontrib>Wan, Li-Jun</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries.</description><subject>Electrodes</subject><subject>ENERGY STORAGE</subject><subject>Layers</subject><subject>Oxides</subject><subject>Phase transitions</subject><subject>Spinel</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNptkUFv1DAQhS0EotvCjTOyOHEgxeM4iX2kq9JWWgRS4WzZzqTxKhsX2zmUX4-jXeDCxSPrffNGM4-QN8AugXH4uDcuXUoLtajlM7KBhrOqAd4-JxvGGK862dZn5DylffkKLuElOauZ5B0A35Dx22gS0m2YcwwTDTO9X-JgHNIhRJpHpPfZWD_5Xyb7ooaB3vqHkV7PGB-e6NbkMfRIv5iM0ZsprcDO59EvB3pX-CuTVwXTK_JiKDq-PtUL8uPz9fftbbX7enO3_bSrjFA8Vy20wkrBsKyjFAdpwJVtbN-CZdKBw1aIuu-E6sBaANcy1ojeSlTABmXqC_Lu6BtS9jo5n9GNLswzuqyhUUIBL9D7I_QYw88FU9YHnxxOk5kxLEmXuZ1qmvIW9MMRdTGkFHHQj9EfTHzSwPQagF4D0KcACv725LzYA_Z_4T8X_zd67dqHJc7lGv_3-g2ul4zG</recordid><startdate>20190327</startdate><enddate>20190327</enddate><creator>Piao, Jun-Yu</creator><creator>Gu, Lin</creator><creator>Wei, Zengxi</creator><creator>Ma, Jianmin</creator><creator>Wu, Jinpeng</creator><creator>Yang, Wanli</creator><creator>Gong, Yue</creator><creator>Sun, Yong-Gang</creator><creator>Duan, Shu-Yi</creator><creator>Tao, Xian-Sen</creator><creator>Bin, De-Shan</creator><creator>Cao, An-Min</creator><creator>Wan, Li-Jun</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9280-4337</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><orcidid>https://orcid.org/0000-0002-0656-0936</orcidid><orcidid>https://orcid.org/000000027504031X</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000192804337</orcidid><orcidid>https://orcid.org/0000000206560936</orcidid></search><sort><creationdate>20190327</creationdate><title>Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries</title><author>Piao, Jun-Yu ; Gu, Lin ; Wei, Zengxi ; Ma, Jianmin ; Wu, Jinpeng ; Yang, Wanli ; Gong, Yue ; Sun, Yong-Gang ; Duan, Shu-Yi ; Tao, Xian-Sen ; Bin, De-Shan ; Cao, An-Min ; Wan, Li-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-6164b840e34399218a1c512bd61b08c1ce6443d74971bb11c60054db8e910f9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Electrodes</topic><topic>ENERGY STORAGE</topic><topic>Layers</topic><topic>Oxides</topic><topic>Phase transitions</topic><topic>Spinel</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piao, Jun-Yu</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Wei, Zengxi</creatorcontrib><creatorcontrib>Ma, Jianmin</creatorcontrib><creatorcontrib>Wu, Jinpeng</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Gong, Yue</creatorcontrib><creatorcontrib>Sun, Yong-Gang</creatorcontrib><creatorcontrib>Duan, Shu-Yi</creatorcontrib><creatorcontrib>Tao, Xian-Sen</creatorcontrib><creatorcontrib>Bin, De-Shan</creatorcontrib><creatorcontrib>Cao, An-Min</creatorcontrib><creatorcontrib>Wan, Li-Jun</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piao, Jun-Yu</au><au>Gu, Lin</au><au>Wei, Zengxi</au><au>Ma, Jianmin</au><au>Wu, Jinpeng</au><au>Yang, Wanli</au><au>Gong, Yue</au><au>Sun, Yong-Gang</au><au>Duan, Shu-Yi</au><au>Tao, Xian-Sen</au><au>Bin, De-Shan</au><au>Cao, An-Min</au><au>Wan, Li-Jun</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2019-03-27</date><risdate>2019</risdate><volume>141</volume><issue>12</issue><spage>4900</spage><epage>4907</epage><pages>4900-4907</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The development of high energy electrode materials for lithium ion batteries is challenged by their inherent instabilities, which become more aggravated as the energy densities continue to climb, accordingly causing increasing concerns on battery safety and reliability. Here, taking the high voltage cathode of LiNi0.5Mn1.5O4 as an example, we demonstrate a protocol to stabilize this cathode through a systematic phase modulating on its particle surface. We are able to transfer the spinel surface into a 30 nm shell composed of two functional phases including a rock-salt one and a layered one. The former is electrochemically inert for surface stabilization while the latter is designated to provide necessary electrochemical activity. The precise synthesis control enables us to tune the ratio of these two phases, and achieve an optimized balance between improved stability against structural degradation without sacrificing its capacity. This study highlights the critical importance of well-tailored surface phase property for the cathode stabilization of high energy lithium ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30827112</pmid><doi>10.1021/jacs.8b13438</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9280-4337</orcidid><orcidid>https://orcid.org/0000-0003-0666-8063</orcidid><orcidid>https://orcid.org/0000-0002-7504-031X</orcidid><orcidid>https://orcid.org/0000-0002-0656-0936</orcidid><orcidid>https://orcid.org/000000027504031X</orcidid><orcidid>https://orcid.org/0000000306668063</orcidid><orcidid>https://orcid.org/0000000192804337</orcidid><orcidid>https://orcid.org/0000000206560936</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2019-03, Vol.141 (12), p.4900-4907
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1594912
source ACS Publications
subjects Electrodes
ENERGY STORAGE
Layers
Oxides
Phase transitions
Spinel
title Phase Control on Surface for the Stabilization of High Energy Cathode Materials of Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A17%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%20Control%20on%20Surface%20for%20the%20Stabilization%20of%20High%20Energy%20Cathode%20Materials%20of%20Lithium%20Ion%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Piao,%20Jun-Yu&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-03-27&rft.volume=141&rft.issue=12&rft.spage=4900&rft.epage=4907&rft.pages=4900-4907&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b13438&rft_dat=%3Cproquest_osti_%3E2187955187%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2187955187&rft_id=info:pmid/30827112&rfr_iscdi=true