Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles

•We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio >40 is realized.•Tuning Fermi level of graphene shells enables the heat splitti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2019-09, Vol.140 (C), p.80-87
Hauptverfasser: Song, Jinlin, Cheng, Qiang, Luo, Zixue, Zhou, Xinping, Zhang, Zhuomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue C
container_start_page 80
container_title International journal of heat and mass transfer
container_volume 140
creator Song, Jinlin
Cheng, Qiang
Luo, Zixue
Zhou, Xinping
Zhang, Zhuomin
description •We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio >40 is realized.•Tuning Fermi level of graphene shells enables the heat splitting ratio to exceed 99. We theoretically demonstrate the modulation and splitting of radiative heat flux in a three-body system consisting of graphene/SiC core-shell (GSCS) nanoparticles on the basis of their highly tunable polarizabilities, which play a dominant role in the coupling of localized surface resonance. The excitation of multiple photon tunneling modes enables the radiative heat transfer to be controlled in different scenarios. Using the dependence of photon tunneling on the Fermi level and radius of the intermediate GSCS nanoparticle, such a many-body system not only holds the potential to be a near-field thermal modulator with a thermal modulation ratio greater than 40, but also allows the heat splitting effect with the ratio over 99 when the intermediate particle becomes the hot source. This work may facilitate dynamical thermal management in a many-body system, and can also benefit the plasmonics community in the near future.
doi_str_mv 10.1016/j.ijheatmasstransfer.2019.05.102
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1594786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019320095</els_id><sourcerecordid>2273190714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-ca6d59916f3f56479797b5c58531debb462073773cdde57022e50b451bb133813</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EEkvLd7DgwiVb_4nj-AZa0VJU1ANwthx70jhK7WB7V_Tb19Fy41LNYTSan9680UPoEyV7Smh3Ne_9PIEpjybnkkzII6Q9I1TtiagEe4V2tJeqYbRXr9GOECobxSl5i97lPG8jabsdcj-iOy6m-BiwCQ7ndfGl-PCA44jLlACaIbonnIzzlToB3o7icTn-xSdv8EMy6wQBrn76A7YxQZMnWBYcTIirScXbBfIlejOaJcP7f_0C_b7--uvwrbm7v7k9fLlrbKtYaazpnFCKdiMfRddKVWsQVvSCUwfD0HaMSC4lt86BkIQxEGRoBR0GynlP-QX6cNaNuXidrS9gJxtDAFs0FaqVfVehj2doTfHPEXLRczymUH1pxiSnikjaVurzmbIp5pxg1GvyjyY9aUr0FoCe9f8B6C0ATUQlWJX4fpaA-vLJ1211BMGC82kz5KJ_udgzddCbaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273190714</pqid></control><display><type>article</type><title>Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Song, Jinlin ; Cheng, Qiang ; Luo, Zixue ; Zhou, Xinping ; Zhang, Zhuomin</creator><creatorcontrib>Song, Jinlin ; Cheng, Qiang ; Luo, Zixue ; Zhou, Xinping ; Zhang, Zhuomin ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>•We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio &gt;40 is realized.•Tuning Fermi level of graphene shells enables the heat splitting ratio to exceed 99. We theoretically demonstrate the modulation and splitting of radiative heat flux in a three-body system consisting of graphene/SiC core-shell (GSCS) nanoparticles on the basis of their highly tunable polarizabilities, which play a dominant role in the coupling of localized surface resonance. The excitation of multiple photon tunneling modes enables the radiative heat transfer to be controlled in different scenarios. Using the dependence of photon tunneling on the Fermi level and radius of the intermediate GSCS nanoparticle, such a many-body system not only holds the potential to be a near-field thermal modulator with a thermal modulation ratio greater than 40, but also allows the heat splitting effect with the ratio over 99 when the intermediate particle becomes the hot source. This work may facilitate dynamical thermal management in a many-body system, and can also benefit the plasmonics community in the near future.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.05.102</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Core-shell particles ; Dependence ; ENGINEERING ; Graphene ; Graphene/SiC core-shell nanoparticles ; Heat flux ; Heat splitting ; Many-body system ; Modulation ; Nanoparticles ; Near-field radiative heat transfer ; Photons ; Plasmonics ; Radiative heat transfer ; Silicon carbide ; Splitting ; Thermal management ; Thermal modulator</subject><ispartof>International journal of heat and mass transfer, 2019-09, Vol.140 (C), p.80-87</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-ca6d59916f3f56479797b5c58531debb462073773cdde57022e50b451bb133813</citedby><cites>FETCH-LOGICAL-c492t-ca6d59916f3f56479797b5c58531debb462073773cdde57022e50b451bb133813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.102$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1594786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Jinlin</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Luo, Zixue</creatorcontrib><creatorcontrib>Zhou, Xinping</creatorcontrib><creatorcontrib>Zhang, Zhuomin</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles</title><title>International journal of heat and mass transfer</title><description>•We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio &gt;40 is realized.•Tuning Fermi level of graphene shells enables the heat splitting ratio to exceed 99. We theoretically demonstrate the modulation and splitting of radiative heat flux in a three-body system consisting of graphene/SiC core-shell (GSCS) nanoparticles on the basis of their highly tunable polarizabilities, which play a dominant role in the coupling of localized surface resonance. The excitation of multiple photon tunneling modes enables the radiative heat transfer to be controlled in different scenarios. Using the dependence of photon tunneling on the Fermi level and radius of the intermediate GSCS nanoparticle, such a many-body system not only holds the potential to be a near-field thermal modulator with a thermal modulation ratio greater than 40, but also allows the heat splitting effect with the ratio over 99 when the intermediate particle becomes the hot source. This work may facilitate dynamical thermal management in a many-body system, and can also benefit the plasmonics community in the near future.</description><subject>Core-shell particles</subject><subject>Dependence</subject><subject>ENGINEERING</subject><subject>Graphene</subject><subject>Graphene/SiC core-shell nanoparticles</subject><subject>Heat flux</subject><subject>Heat splitting</subject><subject>Many-body system</subject><subject>Modulation</subject><subject>Nanoparticles</subject><subject>Near-field radiative heat transfer</subject><subject>Photons</subject><subject>Plasmonics</subject><subject>Radiative heat transfer</subject><subject>Silicon carbide</subject><subject>Splitting</subject><subject>Thermal management</subject><subject>Thermal modulator</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v1DAQxS0EEkvLd7DgwiVb_4nj-AZa0VJU1ANwthx70jhK7WB7V_Tb19Fy41LNYTSan9680UPoEyV7Smh3Ne_9PIEpjybnkkzII6Q9I1TtiagEe4V2tJeqYbRXr9GOECobxSl5i97lPG8jabsdcj-iOy6m-BiwCQ7ndfGl-PCA44jLlACaIbonnIzzlToB3o7icTn-xSdv8EMy6wQBrn76A7YxQZMnWBYcTIirScXbBfIlejOaJcP7f_0C_b7--uvwrbm7v7k9fLlrbKtYaazpnFCKdiMfRddKVWsQVvSCUwfD0HaMSC4lt86BkIQxEGRoBR0GynlP-QX6cNaNuXidrS9gJxtDAFs0FaqVfVehj2doTfHPEXLRczymUH1pxiSnikjaVurzmbIp5pxg1GvyjyY9aUr0FoCe9f8B6C0ATUQlWJX4fpaA-vLJ1211BMGC82kz5KJ_udgzddCbaQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Song, Jinlin</creator><creator>Cheng, Qiang</creator><creator>Luo, Zixue</creator><creator>Zhou, Xinping</creator><creator>Zhang, Zhuomin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190901</creationdate><title>Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles</title><author>Song, Jinlin ; Cheng, Qiang ; Luo, Zixue ; Zhou, Xinping ; Zhang, Zhuomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-ca6d59916f3f56479797b5c58531debb462073773cdde57022e50b451bb133813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Core-shell particles</topic><topic>Dependence</topic><topic>ENGINEERING</topic><topic>Graphene</topic><topic>Graphene/SiC core-shell nanoparticles</topic><topic>Heat flux</topic><topic>Heat splitting</topic><topic>Many-body system</topic><topic>Modulation</topic><topic>Nanoparticles</topic><topic>Near-field radiative heat transfer</topic><topic>Photons</topic><topic>Plasmonics</topic><topic>Radiative heat transfer</topic><topic>Silicon carbide</topic><topic>Splitting</topic><topic>Thermal management</topic><topic>Thermal modulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jinlin</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Luo, Zixue</creatorcontrib><creatorcontrib>Zhou, Xinping</creatorcontrib><creatorcontrib>Zhang, Zhuomin</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jinlin</au><au>Cheng, Qiang</au><au>Luo, Zixue</au><au>Zhou, Xinping</au><au>Zhang, Zhuomin</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>140</volume><issue>C</issue><spage>80</spage><epage>87</epage><pages>80-87</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio &gt;40 is realized.•Tuning Fermi level of graphene shells enables the heat splitting ratio to exceed 99. We theoretically demonstrate the modulation and splitting of radiative heat flux in a three-body system consisting of graphene/SiC core-shell (GSCS) nanoparticles on the basis of their highly tunable polarizabilities, which play a dominant role in the coupling of localized surface resonance. The excitation of multiple photon tunneling modes enables the radiative heat transfer to be controlled in different scenarios. Using the dependence of photon tunneling on the Fermi level and radius of the intermediate GSCS nanoparticle, such a many-body system not only holds the potential to be a near-field thermal modulator with a thermal modulation ratio greater than 40, but also allows the heat splitting effect with the ratio over 99 when the intermediate particle becomes the hot source. This work may facilitate dynamical thermal management in a many-body system, and can also benefit the plasmonics community in the near future.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.05.102</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2019-09, Vol.140 (C), p.80-87
issn 0017-9310
1879-2189
language eng
recordid cdi_osti_scitechconnect_1594786
source Access via ScienceDirect (Elsevier)
subjects Core-shell particles
Dependence
ENGINEERING
Graphene
Graphene/SiC core-shell nanoparticles
Heat flux
Heat splitting
Many-body system
Modulation
Nanoparticles
Near-field radiative heat transfer
Photons
Plasmonics
Radiative heat transfer
Silicon carbide
Splitting
Thermal management
Thermal modulator
title Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20and%20splitting%20of%20three-body%20radiative%20heat%20flux%20via%20graphene/SiC%20core-shell%20nanoparticles&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Song,%20Jinlin&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2019-09-01&rft.volume=140&rft.issue=C&rft.spage=80&rft.epage=87&rft.pages=80-87&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.05.102&rft_dat=%3Cproquest_osti_%3E2273190714%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273190714&rft_id=info:pmid/&rft_els_id=S0017931019320095&rfr_iscdi=true