Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles
•We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio >40 is realized.•Tuning Fermi level of graphene shells enables the heat splitti...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2019-09, Vol.140 (C), p.80-87 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | C |
container_start_page | 80 |
container_title | International journal of heat and mass transfer |
container_volume | 140 |
creator | Song, Jinlin Cheng, Qiang Luo, Zixue Zhou, Xinping Zhang, Zhuomin |
description | •We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio >40 is realized.•Tuning Fermi level of graphene shells enables the heat splitting ratio to exceed 99.
We theoretically demonstrate the modulation and splitting of radiative heat flux in a three-body system consisting of graphene/SiC core-shell (GSCS) nanoparticles on the basis of their highly tunable polarizabilities, which play a dominant role in the coupling of localized surface resonance. The excitation of multiple photon tunneling modes enables the radiative heat transfer to be controlled in different scenarios. Using the dependence of photon tunneling on the Fermi level and radius of the intermediate GSCS nanoparticle, such a many-body system not only holds the potential to be a near-field thermal modulator with a thermal modulation ratio greater than 40, but also allows the heat splitting effect with the ratio over 99 when the intermediate particle becomes the hot source. This work may facilitate dynamical thermal management in a many-body system, and can also benefit the plasmonics community in the near future. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2019.05.102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1594786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931019320095</els_id><sourcerecordid>2273190714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-ca6d59916f3f56479797b5c58531debb462073773cdde57022e50b451bb133813</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EEkvLd7DgwiVb_4nj-AZa0VJU1ANwthx70jhK7WB7V_Tb19Fy41LNYTSan9680UPoEyV7Smh3Ne_9PIEpjybnkkzII6Q9I1TtiagEe4V2tJeqYbRXr9GOECobxSl5i97lPG8jabsdcj-iOy6m-BiwCQ7ndfGl-PCA44jLlACaIbonnIzzlToB3o7icTn-xSdv8EMy6wQBrn76A7YxQZMnWBYcTIirScXbBfIlejOaJcP7f_0C_b7--uvwrbm7v7k9fLlrbKtYaazpnFCKdiMfRddKVWsQVvSCUwfD0HaMSC4lt86BkIQxEGRoBR0GynlP-QX6cNaNuXidrS9gJxtDAFs0FaqVfVehj2doTfHPEXLRczymUH1pxiSnikjaVurzmbIp5pxg1GvyjyY9aUr0FoCe9f8B6C0ATUQlWJX4fpaA-vLJ1211BMGC82kz5KJ_udgzddCbaQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2273190714</pqid></control><display><type>article</type><title>Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Song, Jinlin ; Cheng, Qiang ; Luo, Zixue ; Zhou, Xinping ; Zhang, Zhuomin</creator><creatorcontrib>Song, Jinlin ; Cheng, Qiang ; Luo, Zixue ; Zhou, Xinping ; Zhang, Zhuomin ; Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><description>•We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio >40 is realized.•Tuning Fermi level of graphene shells enables the heat splitting ratio to exceed 99.
We theoretically demonstrate the modulation and splitting of radiative heat flux in a three-body system consisting of graphene/SiC core-shell (GSCS) nanoparticles on the basis of their highly tunable polarizabilities, which play a dominant role in the coupling of localized surface resonance. The excitation of multiple photon tunneling modes enables the radiative heat transfer to be controlled in different scenarios. Using the dependence of photon tunneling on the Fermi level and radius of the intermediate GSCS nanoparticle, such a many-body system not only holds the potential to be a near-field thermal modulator with a thermal modulation ratio greater than 40, but also allows the heat splitting effect with the ratio over 99 when the intermediate particle becomes the hot source. This work may facilitate dynamical thermal management in a many-body system, and can also benefit the plasmonics community in the near future.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2019.05.102</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Core-shell particles ; Dependence ; ENGINEERING ; Graphene ; Graphene/SiC core-shell nanoparticles ; Heat flux ; Heat splitting ; Many-body system ; Modulation ; Nanoparticles ; Near-field radiative heat transfer ; Photons ; Plasmonics ; Radiative heat transfer ; Silicon carbide ; Splitting ; Thermal management ; Thermal modulator</subject><ispartof>International journal of heat and mass transfer, 2019-09, Vol.140 (C), p.80-87</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-ca6d59916f3f56479797b5c58531debb462073773cdde57022e50b451bb133813</citedby><cites>FETCH-LOGICAL-c492t-ca6d59916f3f56479797b5c58531debb462073773cdde57022e50b451bb133813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.05.102$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1594786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Jinlin</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Luo, Zixue</creatorcontrib><creatorcontrib>Zhou, Xinping</creatorcontrib><creatorcontrib>Zhang, Zhuomin</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><title>Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles</title><title>International journal of heat and mass transfer</title><description>•We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio >40 is realized.•Tuning Fermi level of graphene shells enables the heat splitting ratio to exceed 99.
We theoretically demonstrate the modulation and splitting of radiative heat flux in a three-body system consisting of graphene/SiC core-shell (GSCS) nanoparticles on the basis of their highly tunable polarizabilities, which play a dominant role in the coupling of localized surface resonance. The excitation of multiple photon tunneling modes enables the radiative heat transfer to be controlled in different scenarios. Using the dependence of photon tunneling on the Fermi level and radius of the intermediate GSCS nanoparticle, such a many-body system not only holds the potential to be a near-field thermal modulator with a thermal modulation ratio greater than 40, but also allows the heat splitting effect with the ratio over 99 when the intermediate particle becomes the hot source. This work may facilitate dynamical thermal management in a many-body system, and can also benefit the plasmonics community in the near future.</description><subject>Core-shell particles</subject><subject>Dependence</subject><subject>ENGINEERING</subject><subject>Graphene</subject><subject>Graphene/SiC core-shell nanoparticles</subject><subject>Heat flux</subject><subject>Heat splitting</subject><subject>Many-body system</subject><subject>Modulation</subject><subject>Nanoparticles</subject><subject>Near-field radiative heat transfer</subject><subject>Photons</subject><subject>Plasmonics</subject><subject>Radiative heat transfer</subject><subject>Silicon carbide</subject><subject>Splitting</subject><subject>Thermal management</subject><subject>Thermal modulator</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v1DAQxS0EEkvLd7DgwiVb_4nj-AZa0VJU1ANwthx70jhK7WB7V_Tb19Fy41LNYTSan9680UPoEyV7Smh3Ne_9PIEpjybnkkzII6Q9I1TtiagEe4V2tJeqYbRXr9GOECobxSl5i97lPG8jabsdcj-iOy6m-BiwCQ7ndfGl-PCA44jLlACaIbonnIzzlToB3o7icTn-xSdv8EMy6wQBrn76A7YxQZMnWBYcTIirScXbBfIlejOaJcP7f_0C_b7--uvwrbm7v7k9fLlrbKtYaazpnFCKdiMfRddKVWsQVvSCUwfD0HaMSC4lt86BkIQxEGRoBR0GynlP-QX6cNaNuXidrS9gJxtDAFs0FaqVfVehj2doTfHPEXLRczymUH1pxiSnikjaVurzmbIp5pxg1GvyjyY9aUr0FoCe9f8B6C0ATUQlWJX4fpaA-vLJ1211BMGC82kz5KJ_udgzddCbaQ</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Song, Jinlin</creator><creator>Cheng, Qiang</creator><creator>Luo, Zixue</creator><creator>Zhou, Xinping</creator><creator>Zhang, Zhuomin</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190901</creationdate><title>Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles</title><author>Song, Jinlin ; Cheng, Qiang ; Luo, Zixue ; Zhou, Xinping ; Zhang, Zhuomin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-ca6d59916f3f56479797b5c58531debb462073773cdde57022e50b451bb133813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Core-shell particles</topic><topic>Dependence</topic><topic>ENGINEERING</topic><topic>Graphene</topic><topic>Graphene/SiC core-shell nanoparticles</topic><topic>Heat flux</topic><topic>Heat splitting</topic><topic>Many-body system</topic><topic>Modulation</topic><topic>Nanoparticles</topic><topic>Near-field radiative heat transfer</topic><topic>Photons</topic><topic>Plasmonics</topic><topic>Radiative heat transfer</topic><topic>Silicon carbide</topic><topic>Splitting</topic><topic>Thermal management</topic><topic>Thermal modulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Jinlin</creatorcontrib><creatorcontrib>Cheng, Qiang</creatorcontrib><creatorcontrib>Luo, Zixue</creatorcontrib><creatorcontrib>Zhou, Xinping</creatorcontrib><creatorcontrib>Zhang, Zhuomin</creatorcontrib><creatorcontrib>Georgia Institute of Technology, Atlanta, GA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Jinlin</au><au>Cheng, Qiang</au><au>Luo, Zixue</au><au>Zhou, Xinping</au><au>Zhang, Zhuomin</au><aucorp>Georgia Institute of Technology, Atlanta, GA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>140</volume><issue>C</issue><spage>80</spage><epage>87</epage><pages>80-87</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•We investigate radiative heat transfer among three graphene/SiC core-shell nanoparticles.•The excitation of multiple photon tunneling modes are analyzed.•A near-field thermal modulator with a thermal modulation ratio >40 is realized.•Tuning Fermi level of graphene shells enables the heat splitting ratio to exceed 99.
We theoretically demonstrate the modulation and splitting of radiative heat flux in a three-body system consisting of graphene/SiC core-shell (GSCS) nanoparticles on the basis of their highly tunable polarizabilities, which play a dominant role in the coupling of localized surface resonance. The excitation of multiple photon tunneling modes enables the radiative heat transfer to be controlled in different scenarios. Using the dependence of photon tunneling on the Fermi level and radius of the intermediate GSCS nanoparticle, such a many-body system not only holds the potential to be a near-field thermal modulator with a thermal modulation ratio greater than 40, but also allows the heat splitting effect with the ratio over 99 when the intermediate particle becomes the hot source. This work may facilitate dynamical thermal management in a many-body system, and can also benefit the plasmonics community in the near future.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2019.05.102</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2019-09, Vol.140 (C), p.80-87 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_osti_scitechconnect_1594786 |
source | Access via ScienceDirect (Elsevier) |
subjects | Core-shell particles Dependence ENGINEERING Graphene Graphene/SiC core-shell nanoparticles Heat flux Heat splitting Many-body system Modulation Nanoparticles Near-field radiative heat transfer Photons Plasmonics Radiative heat transfer Silicon carbide Splitting Thermal management Thermal modulator |
title | Modulation and splitting of three-body radiative heat flux via graphene/SiC core-shell nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A02%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20and%20splitting%20of%20three-body%20radiative%20heat%20flux%20via%20graphene/SiC%20core-shell%20nanoparticles&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Song,%20Jinlin&rft.aucorp=Georgia%20Institute%20of%20Technology,%20Atlanta,%20GA%20(United%20States)&rft.date=2019-09-01&rft.volume=140&rft.issue=C&rft.spage=80&rft.epage=87&rft.pages=80-87&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2019.05.102&rft_dat=%3Cproquest_osti_%3E2273190714%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2273190714&rft_id=info:pmid/&rft_els_id=S0017931019320095&rfr_iscdi=true |