New kagome prototype materials: discovery of KV3Sb5,RbV3Sb5 , and CsV3Sb5

In this work, we present our discovery and characterization of a new kagome prototype structure, KV3Sb5. We also present the discovery of the isostructural compounds RbV3Sb5 and CsV3Sb5. All materials exhibit a structurally perfect two-dimensional kagome net of vanadium. Density-functional theory ca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2019-09, Vol.3 (9)
Hauptverfasser: Ortiz, Brenden R., Gomes, Lídia C., Morey, Jennifer R., Winiarski, Michal, Bordelon, Mitchell, Mangum, John S., Oswald, Iain W. H., Rodriguez-Rivera, Jose A., Neilson, James R., Wilson, Stephen D., Ertekin, Elif, McQueen, Tyrel M., Toberer, Eric S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physical review materials
container_volume 3
creator Ortiz, Brenden R.
Gomes, Lídia C.
Morey, Jennifer R.
Winiarski, Michal
Bordelon, Mitchell
Mangum, John S.
Oswald, Iain W. H.
Rodriguez-Rivera, Jose A.
Neilson, James R.
Wilson, Stephen D.
Ertekin, Elif
McQueen, Tyrel M.
Toberer, Eric S.
description In this work, we present our discovery and characterization of a new kagome prototype structure, KV3Sb5. We also present the discovery of the isostructural compounds RbV3Sb5 and CsV3Sb5. All materials exhibit a structurally perfect two-dimensional kagome net of vanadium. Density-functional theory calculations indicate that the materials are metallic, with the Fermi level in close proximity to several Dirac points. Powder and single-crystal syntheses are presented, with postsynthetic treatments shown to deintercalate potassium from single crystals of KV3Sb5. Considering the proximity to Dirac points, deintercalation provides a convenient means to tune the Fermi level. Magnetization measurements indicate that KV3Sb5 exhibits behavior consistent with a the Curie-Weiss model at high temperatures, although the effective moment is low (0.22μB per vanadium ion). An anomaly is observed in both magnetization and heat capacity measurements at 80 K, below which the moment is largely quenched. Elastic neutron scattering measurements find no obvious evidence of long-range or short-range magnetic ordering below 80 K. The possibility of an orbital-ordering event is considered. Single-crystal resistivity measurements show the effect of deintercalation on the electron transport and allow estimation of the Kadowaki-Woods ratio in KV3Sb5. We find that A/γ2~61μOhm cm mol2 FU K2J-2, suggesting that correlated electron transport may be possible. KV3Sb5 and its cogeners RbV3Sb5 and CsV3Sb5 represent a new family of kagome metals, and our results demonstrate that they deserve further study as potential model systems.
doi_str_mv 10.1103/PhysRevMaterials.3.094407
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1594783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1594783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-76429f28fe678140a20f91c4b8f80f06d236ebbaaa6c9445092931892c0e24e33</originalsourceid><addsrcrecordid>eNpNj8tOwzAURC0EElXpPxjWTbh-JTY7FEGpKA-Vx7ZynGsaoHFVW0X5e6oCEqszs5gjDSGnDHLGQJw_Lvs4x-2dTbhp7WfMRQ5GSigPyIDLUmXGKHH4Lx-TUYzvAMC0Yrw0AzK9xy_6Yd_CCul6E1JI_Rrp6s94QZs2urDFTU-Dp7ev4qlW43m9Jx1T2zW0ivt2Qo78boGjXw7Jy_XVc3WTzR4m0-pyljkudMrKQnLjufZYlJpJsBy8YU7W2mvwUDRcFFjX1trC7b4oMNwIpg13gFyiEENy9uMNMbWL6NqEbulC16FLC6aMLLUQ30bPUQM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>New kagome prototype materials: discovery of KV3Sb5,RbV3Sb5 , and CsV3Sb5</title><source>American Physical Society Journals</source><creator>Ortiz, Brenden R. ; Gomes, Lídia C. ; Morey, Jennifer R. ; Winiarski, Michal ; Bordelon, Mitchell ; Mangum, John S. ; Oswald, Iain W. H. ; Rodriguez-Rivera, Jose A. ; Neilson, James R. ; Wilson, Stephen D. ; Ertekin, Elif ; McQueen, Tyrel M. ; Toberer, Eric S.</creator><creatorcontrib>Ortiz, Brenden R. ; Gomes, Lídia C. ; Morey, Jennifer R. ; Winiarski, Michal ; Bordelon, Mitchell ; Mangum, John S. ; Oswald, Iain W. H. ; Rodriguez-Rivera, Jose A. ; Neilson, James R. ; Wilson, Stephen D. ; Ertekin, Elif ; McQueen, Tyrel M. ; Toberer, Eric S. ; Energy Frontier Research Centers (EFRC) (United States). Institute for Quantum Matter (IQM) ; Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><description>In this work, we present our discovery and characterization of a new kagome prototype structure, KV3Sb5. We also present the discovery of the isostructural compounds RbV3Sb5 and CsV3Sb5. All materials exhibit a structurally perfect two-dimensional kagome net of vanadium. Density-functional theory calculations indicate that the materials are metallic, with the Fermi level in close proximity to several Dirac points. Powder and single-crystal syntheses are presented, with postsynthetic treatments shown to deintercalate potassium from single crystals of KV3Sb5. Considering the proximity to Dirac points, deintercalation provides a convenient means to tune the Fermi level. Magnetization measurements indicate that KV3Sb5 exhibits behavior consistent with a the Curie-Weiss model at high temperatures, although the effective moment is low (0.22μB per vanadium ion). An anomaly is observed in both magnetization and heat capacity measurements at 80 K, below which the moment is largely quenched. Elastic neutron scattering measurements find no obvious evidence of long-range or short-range magnetic ordering below 80 K. The possibility of an orbital-ordering event is considered. Single-crystal resistivity measurements show the effect of deintercalation on the electron transport and allow estimation of the Kadowaki-Woods ratio in KV3Sb5. We find that A/γ2~61μOhm cm mol2 FU K2J-2, suggesting that correlated electron transport may be possible. KV3Sb5 and its cogeners RbV3Sb5 and CsV3Sb5 represent a new family of kagome metals, and our results demonstrate that they deserve further study as potential model systems.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.3.094407</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Physical review materials, 2019-09, Vol.3 (9)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-76429f28fe678140a20f91c4b8f80f06d236ebbaaa6c9445092931892c0e24e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1594783$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ortiz, Brenden R.</creatorcontrib><creatorcontrib>Gomes, Lídia C.</creatorcontrib><creatorcontrib>Morey, Jennifer R.</creatorcontrib><creatorcontrib>Winiarski, Michal</creatorcontrib><creatorcontrib>Bordelon, Mitchell</creatorcontrib><creatorcontrib>Mangum, John S.</creatorcontrib><creatorcontrib>Oswald, Iain W. H.</creatorcontrib><creatorcontrib>Rodriguez-Rivera, Jose A.</creatorcontrib><creatorcontrib>Neilson, James R.</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Ertekin, Elif</creatorcontrib><creatorcontrib>McQueen, Tyrel M.</creatorcontrib><creatorcontrib>Toberer, Eric S.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Institute for Quantum Matter (IQM)</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><title>New kagome prototype materials: discovery of KV3Sb5,RbV3Sb5 , and CsV3Sb5</title><title>Physical review materials</title><description>In this work, we present our discovery and characterization of a new kagome prototype structure, KV3Sb5. We also present the discovery of the isostructural compounds RbV3Sb5 and CsV3Sb5. All materials exhibit a structurally perfect two-dimensional kagome net of vanadium. Density-functional theory calculations indicate that the materials are metallic, with the Fermi level in close proximity to several Dirac points. Powder and single-crystal syntheses are presented, with postsynthetic treatments shown to deintercalate potassium from single crystals of KV3Sb5. Considering the proximity to Dirac points, deintercalation provides a convenient means to tune the Fermi level. Magnetization measurements indicate that KV3Sb5 exhibits behavior consistent with a the Curie-Weiss model at high temperatures, although the effective moment is low (0.22μB per vanadium ion). An anomaly is observed in both magnetization and heat capacity measurements at 80 K, below which the moment is largely quenched. Elastic neutron scattering measurements find no obvious evidence of long-range or short-range magnetic ordering below 80 K. The possibility of an orbital-ordering event is considered. Single-crystal resistivity measurements show the effect of deintercalation on the electron transport and allow estimation of the Kadowaki-Woods ratio in KV3Sb5. We find that A/γ2~61μOhm cm mol2 FU K2J-2, suggesting that correlated electron transport may be possible. KV3Sb5 and its cogeners RbV3Sb5 and CsV3Sb5 represent a new family of kagome metals, and our results demonstrate that they deserve further study as potential model systems.</description><subject>MATERIALS SCIENCE</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNj8tOwzAURC0EElXpPxjWTbh-JTY7FEGpKA-Vx7ZynGsaoHFVW0X5e6oCEqszs5gjDSGnDHLGQJw_Lvs4x-2dTbhp7WfMRQ5GSigPyIDLUmXGKHH4Lx-TUYzvAMC0Yrw0AzK9xy_6Yd_CCul6E1JI_Rrp6s94QZs2urDFTU-Dp7ev4qlW43m9Jx1T2zW0ivt2Qo78boGjXw7Jy_XVc3WTzR4m0-pyljkudMrKQnLjufZYlJpJsBy8YU7W2mvwUDRcFFjX1trC7b4oMNwIpg13gFyiEENy9uMNMbWL6NqEbulC16FLC6aMLLUQ30bPUQM</recordid><startdate>20190916</startdate><enddate>20190916</enddate><creator>Ortiz, Brenden R.</creator><creator>Gomes, Lídia C.</creator><creator>Morey, Jennifer R.</creator><creator>Winiarski, Michal</creator><creator>Bordelon, Mitchell</creator><creator>Mangum, John S.</creator><creator>Oswald, Iain W. H.</creator><creator>Rodriguez-Rivera, Jose A.</creator><creator>Neilson, James R.</creator><creator>Wilson, Stephen D.</creator><creator>Ertekin, Elif</creator><creator>McQueen, Tyrel M.</creator><creator>Toberer, Eric S.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190916</creationdate><title>New kagome prototype materials: discovery of KV3Sb5,RbV3Sb5 , and CsV3Sb5</title><author>Ortiz, Brenden R. ; Gomes, Lídia C. ; Morey, Jennifer R. ; Winiarski, Michal ; Bordelon, Mitchell ; Mangum, John S. ; Oswald, Iain W. H. ; Rodriguez-Rivera, Jose A. ; Neilson, James R. ; Wilson, Stephen D. ; Ertekin, Elif ; McQueen, Tyrel M. ; Toberer, Eric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-76429f28fe678140a20f91c4b8f80f06d236ebbaaa6c9445092931892c0e24e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ortiz, Brenden R.</creatorcontrib><creatorcontrib>Gomes, Lídia C.</creatorcontrib><creatorcontrib>Morey, Jennifer R.</creatorcontrib><creatorcontrib>Winiarski, Michal</creatorcontrib><creatorcontrib>Bordelon, Mitchell</creatorcontrib><creatorcontrib>Mangum, John S.</creatorcontrib><creatorcontrib>Oswald, Iain W. H.</creatorcontrib><creatorcontrib>Rodriguez-Rivera, Jose A.</creatorcontrib><creatorcontrib>Neilson, James R.</creatorcontrib><creatorcontrib>Wilson, Stephen D.</creatorcontrib><creatorcontrib>Ertekin, Elif</creatorcontrib><creatorcontrib>McQueen, Tyrel M.</creatorcontrib><creatorcontrib>Toberer, Eric S.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Institute for Quantum Matter (IQM)</creatorcontrib><creatorcontrib>Univ. of California, Santa Barbara, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortiz, Brenden R.</au><au>Gomes, Lídia C.</au><au>Morey, Jennifer R.</au><au>Winiarski, Michal</au><au>Bordelon, Mitchell</au><au>Mangum, John S.</au><au>Oswald, Iain W. H.</au><au>Rodriguez-Rivera, Jose A.</au><au>Neilson, James R.</au><au>Wilson, Stephen D.</au><au>Ertekin, Elif</au><au>McQueen, Tyrel M.</au><au>Toberer, Eric S.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Institute for Quantum Matter (IQM)</aucorp><aucorp>Univ. of California, Santa Barbara, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New kagome prototype materials: discovery of KV3Sb5,RbV3Sb5 , and CsV3Sb5</atitle><jtitle>Physical review materials</jtitle><date>2019-09-16</date><risdate>2019</risdate><volume>3</volume><issue>9</issue><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>In this work, we present our discovery and characterization of a new kagome prototype structure, KV3Sb5. We also present the discovery of the isostructural compounds RbV3Sb5 and CsV3Sb5. All materials exhibit a structurally perfect two-dimensional kagome net of vanadium. Density-functional theory calculations indicate that the materials are metallic, with the Fermi level in close proximity to several Dirac points. Powder and single-crystal syntheses are presented, with postsynthetic treatments shown to deintercalate potassium from single crystals of KV3Sb5. Considering the proximity to Dirac points, deintercalation provides a convenient means to tune the Fermi level. Magnetization measurements indicate that KV3Sb5 exhibits behavior consistent with a the Curie-Weiss model at high temperatures, although the effective moment is low (0.22μB per vanadium ion). An anomaly is observed in both magnetization and heat capacity measurements at 80 K, below which the moment is largely quenched. Elastic neutron scattering measurements find no obvious evidence of long-range or short-range magnetic ordering below 80 K. The possibility of an orbital-ordering event is considered. Single-crystal resistivity measurements show the effect of deintercalation on the electron transport and allow estimation of the Kadowaki-Woods ratio in KV3Sb5. We find that A/γ2~61μOhm cm mol2 FU K2J-2, suggesting that correlated electron transport may be possible. KV3Sb5 and its cogeners RbV3Sb5 and CsV3Sb5 represent a new family of kagome metals, and our results demonstrate that they deserve further study as potential model systems.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.3.094407</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2019-09, Vol.3 (9)
issn 2475-9953
2475-9953
language eng
recordid cdi_osti_scitechconnect_1594783
source American Physical Society Journals
subjects MATERIALS SCIENCE
title New kagome prototype materials: discovery of KV3Sb5,RbV3Sb5 , and CsV3Sb5
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20kagome%20prototype%20materials:%20discovery%20of%20KV3Sb5,RbV3Sb5%20,%20and%20CsV3Sb5&rft.jtitle=Physical%20review%20materials&rft.au=Ortiz,%20Brenden%20R.&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Institute%20for%20Quantum%20Matter%20(IQM)&rft.date=2019-09-16&rft.volume=3&rft.issue=9&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.3.094407&rft_dat=%3Costi%3E1594783%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true