Photogalvanic Etching of n-GaN for Three-Dimensional Electronics

Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching n -type G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2019-05, Vol.48 (5), p.3345-3350
Hauptverfasser: Dryden, Daniel M., Nikolic, Rebecca J., Islam, M. Saif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3350
container_issue 5
container_start_page 3345
container_title Journal of electronic materials
container_volume 48
creator Dryden, Daniel M.
Nikolic, Rebecca J.
Islam, M. Saif
description Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching n -type GaN ( n -GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage. n -GaN was etched in a dilute KOH solution with K 2 S 2 O 8 oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices.
doi_str_mv 10.1007/s11664-019-06982-5
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1593567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174076331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-a4a37a3b96eb4aef33adcdaae5e31bbeae4fe4b4d6b340cbb6956f62366180a43</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKf_gKei52heX5K2N2XOKQz1MMFbSLN07diSmXSC_73RCt48vcv3_Xh8hJwDuwLGiusIICWnDCrKZFXmVByQEQiOFEr5dkhGDCVQkaM4JicxrhkDASWMyM1L63u_0psP7TqTTXvTdm6V-SZzdKafssaHbNEGa-ldt7Uudt7pTTbdWNMHn4x4So4avYn27PeOyev9dDF5oPPn2ePkdk4NVqynmmssNNaVtDXXtkHUS7PU2gqLUNdWW95YXvOlrJEzU9eyErKROUoJJdMcx-Ri2PWx71Q0XW9Na7xz6RMFokIhiwRdDtAu-Pe9jb1a-31IH0eVQ8FZIREhUflAmeBjDLZRu9BtdfhUwNR3TjXkVCmn-smpRJJwkGKC3cqGv-l_rC9fNnfD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174076331</pqid></control><display><type>article</type><title>Photogalvanic Etching of n-GaN for Three-Dimensional Electronics</title><source>SpringerNature Journals</source><creator>Dryden, Daniel M. ; Nikolic, Rebecca J. ; Islam, M. Saif</creator><creatorcontrib>Dryden, Daniel M. ; Nikolic, Rebecca J. ; Islam, M. Saif ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching n -type GaN ( n -GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage. n -GaN was etched in a dilute KOH solution with K 2 S 2 O 8 oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-06982-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>60th Electronic Materials Conference 2018 ; Acidification ; Anisotropy ; Catalysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; electrochemical etching ; Electronics and Microelectronics ; ENGINEERING ; Etchants ; Etching ; Gallium nitride ; Gallium nitrides ; Instrumentation ; MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY ; Optical and Electronic Materials ; Potassium persulfate ; Radioisotope batteries ; Radioisotopes ; Semiconductor devices ; semiconductor fabrication ; Solid State Physics ; Topical Collection: 60th Electronic Materials Conference 2018 ; Transistors ; Wide bandgap semiconductors</subject><ispartof>Journal of electronic materials, 2019-05, Vol.48 (5), p.3345-3350</ispartof><rights>The Minerals, Metals &amp; Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-a4a37a3b96eb4aef33adcdaae5e31bbeae4fe4b4d6b340cbb6956f62366180a43</citedby><cites>FETCH-LOGICAL-c390t-a4a37a3b96eb4aef33adcdaae5e31bbeae4fe4b4d6b340cbb6956f62366180a43</cites><orcidid>0000-0003-3421-7913 ; 0000000334217913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-06982-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-06982-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1593567$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dryden, Daniel M.</creatorcontrib><creatorcontrib>Nikolic, Rebecca J.</creatorcontrib><creatorcontrib>Islam, M. Saif</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Photogalvanic Etching of n-GaN for Three-Dimensional Electronics</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching n -type GaN ( n -GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage. n -GaN was etched in a dilute KOH solution with K 2 S 2 O 8 oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices.</description><subject>60th Electronic Materials Conference 2018</subject><subject>Acidification</subject><subject>Anisotropy</subject><subject>Catalysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>electrochemical etching</subject><subject>Electronics and Microelectronics</subject><subject>ENGINEERING</subject><subject>Etchants</subject><subject>Etching</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>Instrumentation</subject><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Optical and Electronic Materials</subject><subject>Potassium persulfate</subject><subject>Radioisotope batteries</subject><subject>Radioisotopes</subject><subject>Semiconductor devices</subject><subject>semiconductor fabrication</subject><subject>Solid State Physics</subject><subject>Topical Collection: 60th Electronic Materials Conference 2018</subject><subject>Transistors</subject><subject>Wide bandgap semiconductors</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFLwzAUh4MoOKf_gKei52heX5K2N2XOKQz1MMFbSLN07diSmXSC_73RCt48vcv3_Xh8hJwDuwLGiusIICWnDCrKZFXmVByQEQiOFEr5dkhGDCVQkaM4JicxrhkDASWMyM1L63u_0psP7TqTTXvTdm6V-SZzdKafssaHbNEGa-ldt7Uudt7pTTbdWNMHn4x4So4avYn27PeOyev9dDF5oPPn2ePkdk4NVqynmmssNNaVtDXXtkHUS7PU2gqLUNdWW95YXvOlrJEzU9eyErKROUoJJdMcx-Ri2PWx71Q0XW9Na7xz6RMFokIhiwRdDtAu-Pe9jb1a-31IH0eVQ8FZIREhUflAmeBjDLZRu9BtdfhUwNR3TjXkVCmn-smpRJJwkGKC3cqGv-l_rC9fNnfD</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Dryden, Daniel M.</creator><creator>Nikolic, Rebecca J.</creator><creator>Islam, M. Saif</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3421-7913</orcidid><orcidid>https://orcid.org/0000000334217913</orcidid></search><sort><creationdate>20190501</creationdate><title>Photogalvanic Etching of n-GaN for Three-Dimensional Electronics</title><author>Dryden, Daniel M. ; Nikolic, Rebecca J. ; Islam, M. Saif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-a4a37a3b96eb4aef33adcdaae5e31bbeae4fe4b4d6b340cbb6956f62366180a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>60th Electronic Materials Conference 2018</topic><topic>Acidification</topic><topic>Anisotropy</topic><topic>Catalysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>electrochemical etching</topic><topic>Electronics and Microelectronics</topic><topic>ENGINEERING</topic><topic>Etchants</topic><topic>Etching</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>Instrumentation</topic><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Optical and Electronic Materials</topic><topic>Potassium persulfate</topic><topic>Radioisotope batteries</topic><topic>Radioisotopes</topic><topic>Semiconductor devices</topic><topic>semiconductor fabrication</topic><topic>Solid State Physics</topic><topic>Topical Collection: 60th Electronic Materials Conference 2018</topic><topic>Transistors</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dryden, Daniel M.</creatorcontrib><creatorcontrib>Nikolic, Rebecca J.</creatorcontrib><creatorcontrib>Islam, M. Saif</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dryden, Daniel M.</au><au>Nikolic, Rebecca J.</au><au>Islam, M. Saif</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photogalvanic Etching of n-GaN for Three-Dimensional Electronics</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>48</volume><issue>5</issue><spage>3345</spage><epage>3350</epage><pages>3345-3350</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching n -type GaN ( n -GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage. n -GaN was etched in a dilute KOH solution with K 2 S 2 O 8 oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-06982-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3421-7913</orcidid><orcidid>https://orcid.org/0000000334217913</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2019-05, Vol.48 (5), p.3345-3350
issn 0361-5235
1543-186X
language eng
recordid cdi_osti_scitechconnect_1593567
source SpringerNature Journals
subjects 60th Electronic Materials Conference 2018
Acidification
Anisotropy
Catalysis
Characterization and Evaluation of Materials
Chemistry and Materials Science
electrochemical etching
Electronics and Microelectronics
ENGINEERING
Etchants
Etching
Gallium nitride
Gallium nitrides
Instrumentation
MATERIALS SCIENCE
NANOSCIENCE AND NANOTECHNOLOGY
Optical and Electronic Materials
Potassium persulfate
Radioisotope batteries
Radioisotopes
Semiconductor devices
semiconductor fabrication
Solid State Physics
Topical Collection: 60th Electronic Materials Conference 2018
Transistors
Wide bandgap semiconductors
title Photogalvanic Etching of n-GaN for Three-Dimensional Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photogalvanic%20Etching%20of%20n-GaN%20for%20Three-Dimensional%20Electronics&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Dryden,%20Daniel%20M.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-05-01&rft.volume=48&rft.issue=5&rft.spage=3345&rft.epage=3350&rft.pages=3345-3350&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-06982-5&rft_dat=%3Cproquest_osti_%3E2174076331%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174076331&rft_id=info:pmid/&rfr_iscdi=true