Photogalvanic Etching of n-GaN for Three-Dimensional Electronics
Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching n -type G...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2019-05, Vol.48 (5), p.3345-3350 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3350 |
---|---|
container_issue | 5 |
container_start_page | 3345 |
container_title | Journal of electronic materials |
container_volume | 48 |
creator | Dryden, Daniel M. Nikolic, Rebecca J. Islam, M. Saif |
description | Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching
n
-type GaN (
n
-GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage.
n
-GaN was etched in a dilute KOH solution with K
2
S
2
O
8
oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices. |
doi_str_mv | 10.1007/s11664-019-06982-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1593567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2174076331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-a4a37a3b96eb4aef33adcdaae5e31bbeae4fe4b4d6b340cbb6956f62366180a43</originalsourceid><addsrcrecordid>eNp9kMFLwzAUh4MoOKf_gKei52heX5K2N2XOKQz1MMFbSLN07diSmXSC_73RCt48vcv3_Xh8hJwDuwLGiusIICWnDCrKZFXmVByQEQiOFEr5dkhGDCVQkaM4JicxrhkDASWMyM1L63u_0psP7TqTTXvTdm6V-SZzdKafssaHbNEGa-ldt7Uudt7pTTbdWNMHn4x4So4avYn27PeOyev9dDF5oPPn2ePkdk4NVqynmmssNNaVtDXXtkHUS7PU2gqLUNdWW95YXvOlrJEzU9eyErKROUoJJdMcx-Ri2PWx71Q0XW9Na7xz6RMFokIhiwRdDtAu-Pe9jb1a-31IH0eVQ8FZIREhUflAmeBjDLZRu9BtdfhUwNR3TjXkVCmn-smpRJJwkGKC3cqGv-l_rC9fNnfD</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2174076331</pqid></control><display><type>article</type><title>Photogalvanic Etching of n-GaN for Three-Dimensional Electronics</title><source>SpringerNature Journals</source><creator>Dryden, Daniel M. ; Nikolic, Rebecca J. ; Islam, M. Saif</creator><creatorcontrib>Dryden, Daniel M. ; Nikolic, Rebecca J. ; Islam, M. Saif ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching
n
-type GaN (
n
-GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage.
n
-GaN was etched in a dilute KOH solution with K
2
S
2
O
8
oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-019-06982-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>60th Electronic Materials Conference 2018 ; Acidification ; Anisotropy ; Catalysis ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; electrochemical etching ; Electronics and Microelectronics ; ENGINEERING ; Etchants ; Etching ; Gallium nitride ; Gallium nitrides ; Instrumentation ; MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY ; Optical and Electronic Materials ; Potassium persulfate ; Radioisotope batteries ; Radioisotopes ; Semiconductor devices ; semiconductor fabrication ; Solid State Physics ; Topical Collection: 60th Electronic Materials Conference 2018 ; Transistors ; Wide bandgap semiconductors</subject><ispartof>Journal of electronic materials, 2019-05, Vol.48 (5), p.3345-3350</ispartof><rights>The Minerals, Metals & Materials Society 2019</rights><rights>Journal of Electronic Materials is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-a4a37a3b96eb4aef33adcdaae5e31bbeae4fe4b4d6b340cbb6956f62366180a43</citedby><cites>FETCH-LOGICAL-c390t-a4a37a3b96eb4aef33adcdaae5e31bbeae4fe4b4d6b340cbb6956f62366180a43</cites><orcidid>0000-0003-3421-7913 ; 0000000334217913</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-019-06982-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-019-06982-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1593567$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dryden, Daniel M.</creatorcontrib><creatorcontrib>Nikolic, Rebecca J.</creatorcontrib><creatorcontrib>Islam, M. Saif</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Photogalvanic Etching of n-GaN for Three-Dimensional Electronics</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching
n
-type GaN (
n
-GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage.
n
-GaN was etched in a dilute KOH solution with K
2
S
2
O
8
oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices.</description><subject>60th Electronic Materials Conference 2018</subject><subject>Acidification</subject><subject>Anisotropy</subject><subject>Catalysis</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>electrochemical etching</subject><subject>Electronics and Microelectronics</subject><subject>ENGINEERING</subject><subject>Etchants</subject><subject>Etching</subject><subject>Gallium nitride</subject><subject>Gallium nitrides</subject><subject>Instrumentation</subject><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Optical and Electronic Materials</subject><subject>Potassium persulfate</subject><subject>Radioisotope batteries</subject><subject>Radioisotopes</subject><subject>Semiconductor devices</subject><subject>semiconductor fabrication</subject><subject>Solid State Physics</subject><subject>Topical Collection: 60th Electronic Materials Conference 2018</subject><subject>Transistors</subject><subject>Wide bandgap semiconductors</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kMFLwzAUh4MoOKf_gKei52heX5K2N2XOKQz1MMFbSLN07diSmXSC_73RCt48vcv3_Xh8hJwDuwLGiusIICWnDCrKZFXmVByQEQiOFEr5dkhGDCVQkaM4JicxrhkDASWMyM1L63u_0psP7TqTTXvTdm6V-SZzdKafssaHbNEGa-ldt7Uudt7pTTbdWNMHn4x4So4avYn27PeOyev9dDF5oPPn2ePkdk4NVqynmmssNNaVtDXXtkHUS7PU2gqLUNdWW95YXvOlrJEzU9eyErKROUoJJdMcx-Ri2PWx71Q0XW9Na7xz6RMFokIhiwRdDtAu-Pe9jb1a-31IH0eVQ8FZIREhUflAmeBjDLZRu9BtdfhUwNR3TjXkVCmn-smpRJJwkGKC3cqGv-l_rC9fNnfD</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Dryden, Daniel M.</creator><creator>Nikolic, Rebecca J.</creator><creator>Islam, M. Saif</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3421-7913</orcidid><orcidid>https://orcid.org/0000000334217913</orcidid></search><sort><creationdate>20190501</creationdate><title>Photogalvanic Etching of n-GaN for Three-Dimensional Electronics</title><author>Dryden, Daniel M. ; Nikolic, Rebecca J. ; Islam, M. Saif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-a4a37a3b96eb4aef33adcdaae5e31bbeae4fe4b4d6b340cbb6956f62366180a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>60th Electronic Materials Conference 2018</topic><topic>Acidification</topic><topic>Anisotropy</topic><topic>Catalysis</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>electrochemical etching</topic><topic>Electronics and Microelectronics</topic><topic>ENGINEERING</topic><topic>Etchants</topic><topic>Etching</topic><topic>Gallium nitride</topic><topic>Gallium nitrides</topic><topic>Instrumentation</topic><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Optical and Electronic Materials</topic><topic>Potassium persulfate</topic><topic>Radioisotope batteries</topic><topic>Radioisotopes</topic><topic>Semiconductor devices</topic><topic>semiconductor fabrication</topic><topic>Solid State Physics</topic><topic>Topical Collection: 60th Electronic Materials Conference 2018</topic><topic>Transistors</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dryden, Daniel M.</creatorcontrib><creatorcontrib>Nikolic, Rebecca J.</creatorcontrib><creatorcontrib>Islam, M. Saif</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dryden, Daniel M.</au><au>Nikolic, Rebecca J.</au><au>Islam, M. Saif</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photogalvanic Etching of n-GaN for Three-Dimensional Electronics</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>48</volume><issue>5</issue><spage>3345</spage><epage>3350</epage><pages>3345-3350</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Etching in wide-bandgap semiconductors such as GaN aids applications including transistors, sensors, and radioisotope batteries. Plasma-based etching can induce surface damage and contamination that is detrimental to device performance. We present a photoelectrochemical approach to etching
n
-type GaN (
n
-GaN) that is low-cost, simple, and environmentally benign compared to plasma approaches, with the potential for highly anisotropic etching that avoids material damage.
n
-GaN was etched in a dilute KOH solution with K
2
S
2
O
8
oxidizer, ultraviolet (UV) irradiation, and a catalytic metal mask which served as both photomask and counter electrode. Relatively smooth, highly anisotropic, non-defect-selective etching was achieved at rates in excess of 200 nm/min when etching at 65°C. The obstacle of bath acidification was circumvented using the addition of buffering salts to the etchant bath, substantially extending the etchant bath lifetime and etching depth achievable in a single, uninterrupted etch. These results represent a major step toward a scalable, device-ready electrochemical etch for vertical GaN structures and devices.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-019-06982-5</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3421-7913</orcidid><orcidid>https://orcid.org/0000000334217913</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5235 |
ispartof | Journal of electronic materials, 2019-05, Vol.48 (5), p.3345-3350 |
issn | 0361-5235 1543-186X |
language | eng |
recordid | cdi_osti_scitechconnect_1593567 |
source | SpringerNature Journals |
subjects | 60th Electronic Materials Conference 2018 Acidification Anisotropy Catalysis Characterization and Evaluation of Materials Chemistry and Materials Science electrochemical etching Electronics and Microelectronics ENGINEERING Etchants Etching Gallium nitride Gallium nitrides Instrumentation MATERIALS SCIENCE NANOSCIENCE AND NANOTECHNOLOGY Optical and Electronic Materials Potassium persulfate Radioisotope batteries Radioisotopes Semiconductor devices semiconductor fabrication Solid State Physics Topical Collection: 60th Electronic Materials Conference 2018 Transistors Wide bandgap semiconductors |
title | Photogalvanic Etching of n-GaN for Three-Dimensional Electronics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photogalvanic%20Etching%20of%20n-GaN%20for%20Three-Dimensional%20Electronics&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Dryden,%20Daniel%20M.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2019-05-01&rft.volume=48&rft.issue=5&rft.spage=3345&rft.epage=3350&rft.pages=3345-3350&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-019-06982-5&rft_dat=%3Cproquest_osti_%3E2174076331%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2174076331&rft_id=info:pmid/&rfr_iscdi=true |