Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy

Additive manufacturing (AM) promises to revolutionize manufacturing by producing complex parts with tailored mechanical properties through local microstructure control. The main challenge is to control or prevent columnar (elongated) growth morphology which is prevalent in AM parts. Here, we elucida...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2020-02, Vol.184 (C), p.284-305
Hauptverfasser: Shi, Rongpei, Khairallah, Saad A., Roehling, Tien T., Heo, Tae Wook, McKeown, Joseph T., Matthews, Manyalibo J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 305
container_issue C
container_start_page 284
container_title Acta materialia
container_volume 184
creator Shi, Rongpei
Khairallah, Saad A.
Roehling, Tien T.
Heo, Tae Wook
McKeown, Joseph T.
Matthews, Manyalibo J.
description Additive manufacturing (AM) promises to revolutionize manufacturing by producing complex parts with tailored mechanical properties through local microstructure control. The main challenge is to control or prevent columnar (elongated) growth morphology which is prevalent in AM parts. Here, we elucidate mechanisms of microstructure control that promote favorable equiaxed grains (aspect ratio close to 1) using a laser beam shaping strategy. This requires an accurate thermal profile that is only captured using advanced predictive simulation that couples full laser ray tracing, ultra-fast hydrodynamic melt flow and the cellular automata method for grain growth. We investigate columnar to equiaxed microstructure transition during single-track laser powder bed fusion processing of 316 L stainless steel using Gaussian (circular) and elliptical (transverse and longitudinal) laser beam shapes. We demonstrate that the propensity to produce equiaxed grains through nucleation events correlates with large beam width as delivered by an elliptical transverse laser beam. In addition, we reveal different microstructure evolution mechanisms during transient states such as at start and end of a scan track when the laser is respectively turned on and off. Columnar growth is hard to prevent at the start of a track and the growth morphology in the absence of heat input is dictated by the melt pool width and depth achieved and the degree of thermal undercooling. We expect this fundamental understanding of the physics of local beam shaping for microstructural control would have implications on future complex beam shape designs as well as beam modulation. [Display omitted]
doi_str_mv 10.1016/j.actamat.2019.11.053
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1592992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645419307931</els_id><sourcerecordid>S1359645419307931</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-8803ca29d5feb0a690e98ab228f1adbb770ca0c87d29ede42473690e6445bd6d3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIlMInIFncE2zHefiEUMVLKuICZ2tjb1pXeRTbKeLvcdTeueyudmdmNZMkt4xmjLLyfpeBDtBDyDhlMmMso0V-lixYXeUpF0V-Hue8kGkpCnGZXHm_o5TxStBF8v1utRt9cJMOk4OO6HEIbuyIHUiPIS468OjIfvwxsTVoSDt5Ow4EjLHBHpD0MEwtzHQ7bEg8xnokNQg98VvYz6v4AwJufq-TixY6jzenvky-np8-V6_p-uPlbfW4TrUQMqR1TXMNXJqixYZCKSnKGhrO65aBaZqqohqorivDJRoUXFT5DCqFKBpTmnyZ3B11ozurvLYB9Ta6G1AHxQrJpeQRVBxBcwjeYav2zvbgfhWjag5X7dQpXDWHqxhTMdzIezjyMDo4WHTzAxw0GutmfTPafxT-AFk9iKo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shi, Rongpei ; Khairallah, Saad A. ; Roehling, Tien T. ; Heo, Tae Wook ; McKeown, Joseph T. ; Matthews, Manyalibo J.</creator><creatorcontrib>Shi, Rongpei ; Khairallah, Saad A. ; Roehling, Tien T. ; Heo, Tae Wook ; McKeown, Joseph T. ; Matthews, Manyalibo J. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><description>Additive manufacturing (AM) promises to revolutionize manufacturing by producing complex parts with tailored mechanical properties through local microstructure control. The main challenge is to control or prevent columnar (elongated) growth morphology which is prevalent in AM parts. Here, we elucidate mechanisms of microstructure control that promote favorable equiaxed grains (aspect ratio close to 1) using a laser beam shaping strategy. This requires an accurate thermal profile that is only captured using advanced predictive simulation that couples full laser ray tracing, ultra-fast hydrodynamic melt flow and the cellular automata method for grain growth. We investigate columnar to equiaxed microstructure transition during single-track laser powder bed fusion processing of 316 L stainless steel using Gaussian (circular) and elliptical (transverse and longitudinal) laser beam shapes. We demonstrate that the propensity to produce equiaxed grains through nucleation events correlates with large beam width as delivered by an elliptical transverse laser beam. In addition, we reveal different microstructure evolution mechanisms during transient states such as at start and end of a scan track when the laser is respectively turned on and off. Columnar growth is hard to prevent at the start of a track and the growth morphology in the absence of heat input is dictated by the melt pool width and depth achieved and the degree of thermal undercooling. We expect this fundamental understanding of the physics of local beam shaping for microstructural control would have implications on future complex beam shape designs as well as beam modulation. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2019.11.053</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Additive manufacturing ; Beam shaping ; Computer simulation ; Laser powder-bed fusion ; MATERIALS SCIENCE ; Microstructure control</subject><ispartof>Acta materialia, 2020-02, Vol.184 (C), p.284-305</ispartof><rights>2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-8803ca29d5feb0a690e98ab228f1adbb770ca0c87d29ede42473690e6445bd6d3</citedby><cites>FETCH-LOGICAL-c449t-8803ca29d5feb0a690e98ab228f1adbb770ca0c87d29ede42473690e6445bd6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2019.11.053$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1592992$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shi, Rongpei</creatorcontrib><creatorcontrib>Khairallah, Saad A.</creatorcontrib><creatorcontrib>Roehling, Tien T.</creatorcontrib><creatorcontrib>Heo, Tae Wook</creatorcontrib><creatorcontrib>McKeown, Joseph T.</creatorcontrib><creatorcontrib>Matthews, Manyalibo J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><title>Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy</title><title>Acta materialia</title><description>Additive manufacturing (AM) promises to revolutionize manufacturing by producing complex parts with tailored mechanical properties through local microstructure control. The main challenge is to control or prevent columnar (elongated) growth morphology which is prevalent in AM parts. Here, we elucidate mechanisms of microstructure control that promote favorable equiaxed grains (aspect ratio close to 1) using a laser beam shaping strategy. This requires an accurate thermal profile that is only captured using advanced predictive simulation that couples full laser ray tracing, ultra-fast hydrodynamic melt flow and the cellular automata method for grain growth. We investigate columnar to equiaxed microstructure transition during single-track laser powder bed fusion processing of 316 L stainless steel using Gaussian (circular) and elliptical (transverse and longitudinal) laser beam shapes. We demonstrate that the propensity to produce equiaxed grains through nucleation events correlates with large beam width as delivered by an elliptical transverse laser beam. In addition, we reveal different microstructure evolution mechanisms during transient states such as at start and end of a scan track when the laser is respectively turned on and off. Columnar growth is hard to prevent at the start of a track and the growth morphology in the absence of heat input is dictated by the melt pool width and depth achieved and the degree of thermal undercooling. We expect this fundamental understanding of the physics of local beam shaping for microstructural control would have implications on future complex beam shape designs as well as beam modulation. [Display omitted]</description><subject>Additive manufacturing</subject><subject>Beam shaping</subject><subject>Computer simulation</subject><subject>Laser powder-bed fusion</subject><subject>MATERIALS SCIENCE</subject><subject>Microstructure control</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQjBBIlMInIFncE2zHefiEUMVLKuICZ2tjb1pXeRTbKeLvcdTeueyudmdmNZMkt4xmjLLyfpeBDtBDyDhlMmMso0V-lixYXeUpF0V-Hue8kGkpCnGZXHm_o5TxStBF8v1utRt9cJMOk4OO6HEIbuyIHUiPIS468OjIfvwxsTVoSDt5Ow4EjLHBHpD0MEwtzHQ7bEg8xnokNQg98VvYz6v4AwJufq-TixY6jzenvky-np8-V6_p-uPlbfW4TrUQMqR1TXMNXJqixYZCKSnKGhrO65aBaZqqohqorivDJRoUXFT5DCqFKBpTmnyZ3B11ozurvLYB9Ta6G1AHxQrJpeQRVBxBcwjeYav2zvbgfhWjag5X7dQpXDWHqxhTMdzIezjyMDo4WHTzAxw0GutmfTPafxT-AFk9iKo</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Shi, Rongpei</creator><creator>Khairallah, Saad A.</creator><creator>Roehling, Tien T.</creator><creator>Heo, Tae Wook</creator><creator>McKeown, Joseph T.</creator><creator>Matthews, Manyalibo J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20200201</creationdate><title>Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy</title><author>Shi, Rongpei ; Khairallah, Saad A. ; Roehling, Tien T. ; Heo, Tae Wook ; McKeown, Joseph T. ; Matthews, Manyalibo J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-8803ca29d5feb0a690e98ab228f1adbb770ca0c87d29ede42473690e6445bd6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Beam shaping</topic><topic>Computer simulation</topic><topic>Laser powder-bed fusion</topic><topic>MATERIALS SCIENCE</topic><topic>Microstructure control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shi, Rongpei</creatorcontrib><creatorcontrib>Khairallah, Saad A.</creatorcontrib><creatorcontrib>Roehling, Tien T.</creatorcontrib><creatorcontrib>Heo, Tae Wook</creatorcontrib><creatorcontrib>McKeown, Joseph T.</creatorcontrib><creatorcontrib>Matthews, Manyalibo J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shi, Rongpei</au><au>Khairallah, Saad A.</au><au>Roehling, Tien T.</au><au>Heo, Tae Wook</au><au>McKeown, Joseph T.</au><au>Matthews, Manyalibo J.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy</atitle><jtitle>Acta materialia</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>184</volume><issue>C</issue><spage>284</spage><epage>305</epage><pages>284-305</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Additive manufacturing (AM) promises to revolutionize manufacturing by producing complex parts with tailored mechanical properties through local microstructure control. The main challenge is to control or prevent columnar (elongated) growth morphology which is prevalent in AM parts. Here, we elucidate mechanisms of microstructure control that promote favorable equiaxed grains (aspect ratio close to 1) using a laser beam shaping strategy. This requires an accurate thermal profile that is only captured using advanced predictive simulation that couples full laser ray tracing, ultra-fast hydrodynamic melt flow and the cellular automata method for grain growth. We investigate columnar to equiaxed microstructure transition during single-track laser powder bed fusion processing of 316 L stainless steel using Gaussian (circular) and elliptical (transverse and longitudinal) laser beam shapes. We demonstrate that the propensity to produce equiaxed grains through nucleation events correlates with large beam width as delivered by an elliptical transverse laser beam. In addition, we reveal different microstructure evolution mechanisms during transient states such as at start and end of a scan track when the laser is respectively turned on and off. Columnar growth is hard to prevent at the start of a track and the growth morphology in the absence of heat input is dictated by the melt pool width and depth achieved and the degree of thermal undercooling. We expect this fundamental understanding of the physics of local beam shaping for microstructural control would have implications on future complex beam shape designs as well as beam modulation. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2019.11.053</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2020-02, Vol.184 (C), p.284-305
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1592992
source Access via ScienceDirect (Elsevier)
subjects Additive manufacturing
Beam shaping
Computer simulation
Laser powder-bed fusion
MATERIALS SCIENCE
Microstructure control
title Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam shaping strategy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T11%3A21%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructural%20control%20in%20metal%20laser%20powder%20bed%20fusion%20additive%20manufacturing%20using%20laser%20beam%20shaping%20strategy&rft.jtitle=Acta%20materialia&rft.au=Shi,%20Rongpei&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2020-02-01&rft.volume=184&rft.issue=C&rft.spage=284&rft.epage=305&rft.pages=284-305&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2019.11.053&rft_dat=%3Celsevier_osti_%3ES1359645419307931%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645419307931&rfr_iscdi=true