Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose

ABSTRACT Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS yeast research 2020-02, Vol.20 (1), p.1
Hauptverfasser: Oh, Eun Joong, Jin, Yong-Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 1
container_title FEMS yeast research
container_volume 20
creator Oh, Eun Joong
Jin, Yong-Su
description ABSTRACT Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose are reviewed.
doi_str_mv 10.1093/femsyr/foz089
format Article
fullrecord <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_osti_scitechconnect_1592780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701514553</galeid><oup_id>10.1093/femsyr/foz089</oup_id><sourcerecordid>A701514553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-70a364c5d0cebe0132e2591a085c404cdc0d718c68bc98a78a2d910ef83a96b03</originalsourceid><addsrcrecordid>eNqFkkFr3DAQhU1padI0x16LaS7twYnGtiz7GELSBgKBpjkL7Xi0UbClrSSXbn59ZJwmbCkUCWYQ3zzeiJdlH4AdA-uqE01j2PoT7R5Y273K9oE3ooCqqV8_97zZy96FcM8YCMbat9leBR2IGur97Prcro0l8sauc6fzG4V4p7wbt0ghR_L0ywSjKNfO56S1QUM25pr8mKqKxtl5DGkYpsEFep-90WoIdPhUD7Lbi_MfZ9-Kq-uvl2enVwXyEmIhmEoWkfcMaUUMqpJK3oFiLcea1dgj6wW02LQr7FolWlX2HTDSbaW6ZsWqg-zToutCNDKgiYR36KwljBJ4V4p2hj4v0Ma7nxOFKEcTZqvKkpuCLKuKgwCo64Qe_YXeu8nbtIIsa9FAM98Xaq0GksZqF73CWVSeCgYcas6rRB3_g0qnp9Ekj6RNet8Z-LIzkJhIv-NaTSHIy5vvu2yxsOhdCJ603HgzKr-VwOScCLkkQi6JSPzHp8Wm1Uj9M_0nAi-f5KbNf7QeAfb2vk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476166166</pqid></control><display><type>article</type><title>Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose</title><source>Oxford Journals Open Access Collection</source><creator>Oh, Eun Joong ; Jin, Yong-Su</creator><creatorcontrib>Oh, Eun Joong ; Jin, Yong-Su ; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><description>ABSTRACT Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose are reviewed.</description><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1093/femsyr/foz089</identifier><identifier>PMID: 31917414</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>BASIC BIOLOGICAL SCIENCES ; biofuel ; Biofuels ; Biomass ; Biomass energy ; Cellulolytic enzymes ; Cellulose ; Cellulose - metabolism ; Enzymes ; Fermentation ; Hexose ; Hexoses - metabolism ; Hydrolysis ; Industrial Microbiology ; Lignin - metabolism ; Lignocellulose ; lignocellulosic biomass ; Metabolic Engineering ; Monosaccharides ; Pentoses - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Sugars ; Yeast</subject><ispartof>FEMS yeast research, 2020-02, Vol.20 (1), p.1</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of FEMS. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>FEMS 2020.</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-70a364c5d0cebe0132e2591a085c404cdc0d718c68bc98a78a2d910ef83a96b03</citedby><cites>FETCH-LOGICAL-c521t-70a364c5d0cebe0132e2591a085c404cdc0d718c68bc98a78a2d910ef83a96b03</cites><orcidid>0000-0002-4464-9536 ; 0000000244649536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsyr/foz089$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31917414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1592780$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Eun Joong</creatorcontrib><creatorcontrib>Jin, Yong-Su</creatorcontrib><creatorcontrib>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><title>Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>ABSTRACT Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose are reviewed.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biofuel</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Cellulolytic enzymes</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Hexose</subject><subject>Hexoses - metabolism</subject><subject>Hydrolysis</subject><subject>Industrial Microbiology</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>lignocellulosic biomass</subject><subject>Metabolic Engineering</subject><subject>Monosaccharides</subject><subject>Pentoses - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Sugars</subject><subject>Yeast</subject><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkkFr3DAQhU1padI0x16LaS7twYnGtiz7GELSBgKBpjkL7Xi0UbClrSSXbn59ZJwmbCkUCWYQ3zzeiJdlH4AdA-uqE01j2PoT7R5Y273K9oE3ooCqqV8_97zZy96FcM8YCMbat9leBR2IGur97Prcro0l8sauc6fzG4V4p7wbt0ghR_L0ywSjKNfO56S1QUM25pr8mKqKxtl5DGkYpsEFep-90WoIdPhUD7Lbi_MfZ9-Kq-uvl2enVwXyEmIhmEoWkfcMaUUMqpJK3oFiLcea1dgj6wW02LQr7FolWlX2HTDSbaW6ZsWqg-zToutCNDKgiYR36KwljBJ4V4p2hj4v0Ma7nxOFKEcTZqvKkpuCLKuKgwCo64Qe_YXeu8nbtIIsa9FAM98Xaq0GksZqF73CWVSeCgYcas6rRB3_g0qnp9Ekj6RNet8Z-LIzkJhIv-NaTSHIy5vvu2yxsOhdCJ603HgzKr-VwOScCLkkQi6JSPzHp8Wm1Uj9M_0nAi-f5KbNf7QeAfb2vk8</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Oh, Eun Joong</creator><creator>Jin, Yong-Su</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4464-9536</orcidid><orcidid>https://orcid.org/0000000244649536</orcidid></search><sort><creationdate>20200201</creationdate><title>Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose</title><author>Oh, Eun Joong ; Jin, Yong-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-70a364c5d0cebe0132e2591a085c404cdc0d718c68bc98a78a2d910ef83a96b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biofuel</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Cellulolytic enzymes</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Hexose</topic><topic>Hexoses - metabolism</topic><topic>Hydrolysis</topic><topic>Industrial Microbiology</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>lignocellulosic biomass</topic><topic>Metabolic Engineering</topic><topic>Monosaccharides</topic><topic>Pentoses - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Sugars</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Eun Joong</creatorcontrib><creatorcontrib>Jin, Yong-Su</creatorcontrib><creatorcontrib>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh, Eun Joong</au><au>Jin, Yong-Su</au><aucorp>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>ABSTRACT Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose are reviewed.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31917414</pmid><doi>10.1093/femsyr/foz089</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4464-9536</orcidid><orcidid>https://orcid.org/0000000244649536</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1567-1356
ispartof FEMS yeast research, 2020-02, Vol.20 (1), p.1
issn 1567-1356
1567-1364
language eng
recordid cdi_osti_scitechconnect_1592780
source Oxford Journals Open Access Collection
subjects BASIC BIOLOGICAL SCIENCES
biofuel
Biofuels
Biomass
Biomass energy
Cellulolytic enzymes
Cellulose
Cellulose - metabolism
Enzymes
Fermentation
Hexose
Hexoses - metabolism
Hydrolysis
Industrial Microbiology
Lignin - metabolism
Lignocellulose
lignocellulosic biomass
Metabolic Engineering
Monosaccharides
Pentoses - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Sugars
Yeast
title Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20Saccharomyces%20cerevisiae%20for%20efficient%20fermentation%20of%20cellulose&rft.jtitle=FEMS%20yeast%20research&rft.au=Oh,%20Eun%20Joong&rft.aucorp=Center%20for%20Advanced%20Bioenergy%20and%20Bioproducts%20Innovation%20(CABBI),%20Urbana,%20IL%20(United%20States)&rft.date=2020-02-01&rft.volume=20&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=1567-1356&rft.eissn=1567-1364&rft_id=info:doi/10.1093/femsyr/foz089&rft_dat=%3Cgale_TOX%3EA701514553%3C/gale_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476166166&rft_id=info:pmid/31917414&rft_galeid=A701514553&rft_oup_id=10.1093/femsyr/foz089&rfr_iscdi=true