Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose
ABSTRACT Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological...
Gespeichert in:
Veröffentlicht in: | FEMS yeast research 2020-02, Vol.20 (1), p.1 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | FEMS yeast research |
container_volume | 20 |
creator | Oh, Eun Joong Jin, Yong-Su |
description | ABSTRACT
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose are reviewed. |
doi_str_mv | 10.1093/femsyr/foz089 |
format | Article |
fullrecord | <record><control><sourceid>gale_TOX</sourceid><recordid>TN_cdi_osti_scitechconnect_1592780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A701514553</galeid><oup_id>10.1093/femsyr/foz089</oup_id><sourcerecordid>A701514553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-70a364c5d0cebe0132e2591a085c404cdc0d718c68bc98a78a2d910ef83a96b03</originalsourceid><addsrcrecordid>eNqFkkFr3DAQhU1padI0x16LaS7twYnGtiz7GELSBgKBpjkL7Xi0UbClrSSXbn59ZJwmbCkUCWYQ3zzeiJdlH4AdA-uqE01j2PoT7R5Y273K9oE3ooCqqV8_97zZy96FcM8YCMbat9leBR2IGur97Prcro0l8sauc6fzG4V4p7wbt0ghR_L0ywSjKNfO56S1QUM25pr8mKqKxtl5DGkYpsEFep-90WoIdPhUD7Lbi_MfZ9-Kq-uvl2enVwXyEmIhmEoWkfcMaUUMqpJK3oFiLcea1dgj6wW02LQr7FolWlX2HTDSbaW6ZsWqg-zToutCNDKgiYR36KwljBJ4V4p2hj4v0Ma7nxOFKEcTZqvKkpuCLKuKgwCo64Qe_YXeu8nbtIIsa9FAM98Xaq0GksZqF73CWVSeCgYcas6rRB3_g0qnp9Ekj6RNet8Z-LIzkJhIv-NaTSHIy5vvu2yxsOhdCJ603HgzKr-VwOScCLkkQi6JSPzHp8Wm1Uj9M_0nAi-f5KbNf7QeAfb2vk8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476166166</pqid></control><display><type>article</type><title>Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose</title><source>Oxford Journals Open Access Collection</source><creator>Oh, Eun Joong ; Jin, Yong-Su</creator><creatorcontrib>Oh, Eun Joong ; Jin, Yong-Su ; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><description>ABSTRACT
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose are reviewed.</description><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1093/femsyr/foz089</identifier><identifier>PMID: 31917414</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>BASIC BIOLOGICAL SCIENCES ; biofuel ; Biofuels ; Biomass ; Biomass energy ; Cellulolytic enzymes ; Cellulose ; Cellulose - metabolism ; Enzymes ; Fermentation ; Hexose ; Hexoses - metabolism ; Hydrolysis ; Industrial Microbiology ; Lignin - metabolism ; Lignocellulose ; lignocellulosic biomass ; Metabolic Engineering ; Monosaccharides ; Pentoses - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Sugars ; Yeast</subject><ispartof>FEMS yeast research, 2020-02, Vol.20 (1), p.1</ispartof><rights>The Author(s) 2020. Published by Oxford University Press on behalf of FEMS. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 2020</rights><rights>FEMS 2020.</rights><rights>COPYRIGHT 2020 Oxford University Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-70a364c5d0cebe0132e2591a085c404cdc0d718c68bc98a78a2d910ef83a96b03</citedby><cites>FETCH-LOGICAL-c521t-70a364c5d0cebe0132e2591a085c404cdc0d718c68bc98a78a2d910ef83a96b03</cites><orcidid>0000-0002-4464-9536 ; 0000000244649536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/femsyr/foz089$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31917414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1592780$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Eun Joong</creatorcontrib><creatorcontrib>Jin, Yong-Su</creatorcontrib><creatorcontrib>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><title>Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>ABSTRACT
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose are reviewed.</description><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>biofuel</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Biomass energy</subject><subject>Cellulolytic enzymes</subject><subject>Cellulose</subject><subject>Cellulose - metabolism</subject><subject>Enzymes</subject><subject>Fermentation</subject><subject>Hexose</subject><subject>Hexoses - metabolism</subject><subject>Hydrolysis</subject><subject>Industrial Microbiology</subject><subject>Lignin - metabolism</subject><subject>Lignocellulose</subject><subject>lignocellulosic biomass</subject><subject>Metabolic Engineering</subject><subject>Monosaccharides</subject><subject>Pentoses - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Sugars</subject><subject>Yeast</subject><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkkFr3DAQhU1padI0x16LaS7twYnGtiz7GELSBgKBpjkL7Xi0UbClrSSXbn59ZJwmbCkUCWYQ3zzeiJdlH4AdA-uqE01j2PoT7R5Y273K9oE3ooCqqV8_97zZy96FcM8YCMbat9leBR2IGur97Prcro0l8sauc6fzG4V4p7wbt0ghR_L0ywSjKNfO56S1QUM25pr8mKqKxtl5DGkYpsEFep-90WoIdPhUD7Lbi_MfZ9-Kq-uvl2enVwXyEmIhmEoWkfcMaUUMqpJK3oFiLcea1dgj6wW02LQr7FolWlX2HTDSbaW6ZsWqg-zToutCNDKgiYR36KwljBJ4V4p2hj4v0Ma7nxOFKEcTZqvKkpuCLKuKgwCo64Qe_YXeu8nbtIIsa9FAM98Xaq0GksZqF73CWVSeCgYcas6rRB3_g0qnp9Ekj6RNet8Z-LIzkJhIv-NaTSHIy5vvu2yxsOhdCJ603HgzKr-VwOScCLkkQi6JSPzHp8Wm1Uj9M_0nAi-f5KbNf7QeAfb2vk8</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Oh, Eun Joong</creator><creator>Jin, Yong-Su</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4464-9536</orcidid><orcidid>https://orcid.org/0000000244649536</orcidid></search><sort><creationdate>20200201</creationdate><title>Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose</title><author>Oh, Eun Joong ; Jin, Yong-Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-70a364c5d0cebe0132e2591a085c404cdc0d718c68bc98a78a2d910ef83a96b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>biofuel</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Biomass energy</topic><topic>Cellulolytic enzymes</topic><topic>Cellulose</topic><topic>Cellulose - metabolism</topic><topic>Enzymes</topic><topic>Fermentation</topic><topic>Hexose</topic><topic>Hexoses - metabolism</topic><topic>Hydrolysis</topic><topic>Industrial Microbiology</topic><topic>Lignin - metabolism</topic><topic>Lignocellulose</topic><topic>lignocellulosic biomass</topic><topic>Metabolic Engineering</topic><topic>Monosaccharides</topic><topic>Pentoses - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Sugars</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Eun Joong</creatorcontrib><creatorcontrib>Jin, Yong-Su</creatorcontrib><creatorcontrib>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Oh, Eun Joong</au><au>Jin, Yong-Su</au><aucorp>Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Urbana, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2020-02-01</date><risdate>2020</risdate><volume>20</volume><issue>1</issue><spage>1</spage><pages>1-</pages><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>ABSTRACT
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose are reviewed.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>31917414</pmid><doi>10.1093/femsyr/foz089</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4464-9536</orcidid><orcidid>https://orcid.org/0000000244649536</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1567-1356 |
ispartof | FEMS yeast research, 2020-02, Vol.20 (1), p.1 |
issn | 1567-1356 1567-1364 |
language | eng |
recordid | cdi_osti_scitechconnect_1592780 |
source | Oxford Journals Open Access Collection |
subjects | BASIC BIOLOGICAL SCIENCES biofuel Biofuels Biomass Biomass energy Cellulolytic enzymes Cellulose Cellulose - metabolism Enzymes Fermentation Hexose Hexoses - metabolism Hydrolysis Industrial Microbiology Lignin - metabolism Lignocellulose lignocellulosic biomass Metabolic Engineering Monosaccharides Pentoses - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Sugars Yeast |
title | Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A44%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20Saccharomyces%20cerevisiae%20for%20efficient%20fermentation%20of%20cellulose&rft.jtitle=FEMS%20yeast%20research&rft.au=Oh,%20Eun%20Joong&rft.aucorp=Center%20for%20Advanced%20Bioenergy%20and%20Bioproducts%20Innovation%20(CABBI),%20Urbana,%20IL%20(United%20States)&rft.date=2020-02-01&rft.volume=20&rft.issue=1&rft.spage=1&rft.pages=1-&rft.issn=1567-1356&rft.eissn=1567-1364&rft_id=info:doi/10.1093/femsyr/foz089&rft_dat=%3Cgale_TOX%3EA701514553%3C/gale_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476166166&rft_id=info:pmid/31917414&rft_galeid=A701514553&rft_oup_id=10.1093/femsyr/foz089&rfr_iscdi=true |