Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells

In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2019-12, Vol.31 (23), p.9729-9741
Hauptverfasser: Jones, Austin L, Zheng, Zilong, Riley, Parand, Pelse, Ian, Zhang, Junxiang, Abdelsamie, Maged, Toney, Michael F, Marder, Seth R, So, Franky, Brédas, Jean-Luc, Reynolds, John R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9741
container_issue 23
container_start_page 9729
container_title Chemistry of materials
container_volume 31
creator Jones, Austin L
Zheng, Zilong
Riley, Parand
Pelse, Ian
Zhang, Junxiang
Abdelsamie, Maged
Toney, Michael F
Marder, Seth R
So, Franky
Brédas, Jean-Luc
Reynolds, John R
description In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the design of materials that may circumvent this tradeoff, eight structurally similar polymers were synthesized consisting of a fluorinated/non-fluorinated benzothiadiazole (BTDF/BTD) strong acceptor moiety, a thiophene ester (TE) weak acceptor, and various donor units composed of bithiophene (T2), biEDOT, and benzodithiophene (BDT) to form six acceptor gradient and two nongradient polymers. The acceptor gradient motif was designed and theorized to induce more facile exciton dissociation in low driving force solar cells by creating a further separated intramolecular charge-transfer state between the strong BTD acceptor and various donor units through a bridging TE component. Solar cells were fabricated using the eight polymers blended with phenyl-C71-butyric-acid methyl ester (PC71BM) to reveal two top performing isomeric polymers, T2-BTDF-(TE2) and TE2-BTDF-(T2), which were further tested with several non-fullerene acceptors (NFAs): EH-IDTBR, ITIC, and ITIC-4F. In order to fabricate optimally performing solar cells, a 0.2 eV ionization energy offset was found to be essential or the short-circuit current of the NFA cells diminished dramatically. Ultimately, optimized NFA solar cells were fabricated using ITIC-4F paired with each of the top performing polymers to produce an average PCE of 7.3% for TE2-BTDF-(T2) (nongradient) and 3.6% for T2-BTDF-(TE2) (gradient). The acceptor gradient effect was not shown to reduce the amount of charge recombination in NFA solar cells mainly due to the inability to fabricate solar cells, with minimal ionization energy or electron affinity offsets along with morphological complications. This work stresses the importance of acquiring accurate ionization energies and electron affinities when characterizing solar cell energetics, as differences as small as 0.1 eV in the offsets can make a significant impact on overall charge collection.
doi_str_mv 10.1021/acs.chemmater.9b03327
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1591636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a325087105</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-8097459c369951fe503673fa3da7b0d157d96eae63846ee04080f47b3d33e8e73</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKuPICzet042m2RzLNW2QrGCeg5pdtZu2U1Kkh769m5p8eppGP7_G5iPkEcKEwoFfTY2TuwW-94kDBO1AcYKeUVGlBeQc4DimoygUjIvJRe35C7GHQAd0GpE5lNrcZ98yBbB1C26lH347thjyF688yFmzZC9e5fPD12HAR1m6_BjXGuzT9-ZkM2w6-I9uWlMF_HhMsfke_76NVvmq_XibTZd5YYJlfIKlCy5ssOiOG2QAxOSNYbVRm6gplzWSqBBwapSIEIJFTSl3LCaMaxQsjF5Ot_1MbU62jah3VrvHNqkKVdUMDGU-Llkg48xYKP3oe1NOGoK-mRMD8b0nzF9MTZw9Myd4p0_BDe88g_zC-dwcqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells</title><source>ACS Publications</source><creator>Jones, Austin L ; Zheng, Zilong ; Riley, Parand ; Pelse, Ian ; Zhang, Junxiang ; Abdelsamie, Maged ; Toney, Michael F ; Marder, Seth R ; So, Franky ; Brédas, Jean-Luc ; Reynolds, John R</creator><creatorcontrib>Jones, Austin L ; Zheng, Zilong ; Riley, Parand ; Pelse, Ian ; Zhang, Junxiang ; Abdelsamie, Maged ; Toney, Michael F ; Marder, Seth R ; So, Franky ; Brédas, Jean-Luc ; Reynolds, John R ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the design of materials that may circumvent this tradeoff, eight structurally similar polymers were synthesized consisting of a fluorinated/non-fluorinated benzothiadiazole (BTDF/BTD) strong acceptor moiety, a thiophene ester (TE) weak acceptor, and various donor units composed of bithiophene (T2), biEDOT, and benzodithiophene (BDT) to form six acceptor gradient and two nongradient polymers. The acceptor gradient motif was designed and theorized to induce more facile exciton dissociation in low driving force solar cells by creating a further separated intramolecular charge-transfer state between the strong BTD acceptor and various donor units through a bridging TE component. Solar cells were fabricated using the eight polymers blended with phenyl-C71-butyric-acid methyl ester (PC71BM) to reveal two top performing isomeric polymers, T2-BTDF-(TE2) and TE2-BTDF-(T2), which were further tested with several non-fullerene acceptors (NFAs): EH-IDTBR, ITIC, and ITIC-4F. In order to fabricate optimally performing solar cells, a 0.2 eV ionization energy offset was found to be essential or the short-circuit current of the NFA cells diminished dramatically. Ultimately, optimized NFA solar cells were fabricated using ITIC-4F paired with each of the top performing polymers to produce an average PCE of 7.3% for TE2-BTDF-(T2) (nongradient) and 3.6% for T2-BTDF-(TE2) (gradient). The acceptor gradient effect was not shown to reduce the amount of charge recombination in NFA solar cells mainly due to the inability to fabricate solar cells, with minimal ionization energy or electron affinity offsets along with morphological complications. This work stresses the importance of acquiring accurate ionization energies and electron affinities when characterizing solar cell energetics, as differences as small as 0.1 eV in the offsets can make a significant impact on overall charge collection.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b03327</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Chemistry of materials, 2019-12, Vol.31 (23), p.9729-9741</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-8097459c369951fe503673fa3da7b0d157d96eae63846ee04080f47b3d33e8e73</citedby><cites>FETCH-LOGICAL-a369t-8097459c369951fe503673fa3da7b0d157d96eae63846ee04080f47b3d33e8e73</cites><orcidid>0000-0002-7417-4869 ; 0000-0002-8310-677X ; 0000-0002-7513-1166 ; 0000-0001-6921-2536 ; 0000-0001-7278-4471 ; 0000000172784471 ; 000000028310677X ; 0000000169212536 ; 0000000275131166 ; 0000000274174869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b03327$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b03327$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1591636$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Austin L</creatorcontrib><creatorcontrib>Zheng, Zilong</creatorcontrib><creatorcontrib>Riley, Parand</creatorcontrib><creatorcontrib>Pelse, Ian</creatorcontrib><creatorcontrib>Zhang, Junxiang</creatorcontrib><creatorcontrib>Abdelsamie, Maged</creatorcontrib><creatorcontrib>Toney, Michael F</creatorcontrib><creatorcontrib>Marder, Seth R</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>Reynolds, John R</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the design of materials that may circumvent this tradeoff, eight structurally similar polymers were synthesized consisting of a fluorinated/non-fluorinated benzothiadiazole (BTDF/BTD) strong acceptor moiety, a thiophene ester (TE) weak acceptor, and various donor units composed of bithiophene (T2), biEDOT, and benzodithiophene (BDT) to form six acceptor gradient and two nongradient polymers. The acceptor gradient motif was designed and theorized to induce more facile exciton dissociation in low driving force solar cells by creating a further separated intramolecular charge-transfer state between the strong BTD acceptor and various donor units through a bridging TE component. Solar cells were fabricated using the eight polymers blended with phenyl-C71-butyric-acid methyl ester (PC71BM) to reveal two top performing isomeric polymers, T2-BTDF-(TE2) and TE2-BTDF-(T2), which were further tested with several non-fullerene acceptors (NFAs): EH-IDTBR, ITIC, and ITIC-4F. In order to fabricate optimally performing solar cells, a 0.2 eV ionization energy offset was found to be essential or the short-circuit current of the NFA cells diminished dramatically. Ultimately, optimized NFA solar cells were fabricated using ITIC-4F paired with each of the top performing polymers to produce an average PCE of 7.3% for TE2-BTDF-(T2) (nongradient) and 3.6% for T2-BTDF-(TE2) (gradient). The acceptor gradient effect was not shown to reduce the amount of charge recombination in NFA solar cells mainly due to the inability to fabricate solar cells, with minimal ionization energy or electron affinity offsets along with morphological complications. This work stresses the importance of acquiring accurate ionization energies and electron affinities when characterizing solar cell energetics, as differences as small as 0.1 eV in the offsets can make a significant impact on overall charge collection.</description><subject>MATERIALS SCIENCE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKuPICzet042m2RzLNW2QrGCeg5pdtZu2U1Kkh769m5p8eppGP7_G5iPkEcKEwoFfTY2TuwW-94kDBO1AcYKeUVGlBeQc4DimoygUjIvJRe35C7GHQAd0GpE5lNrcZ98yBbB1C26lH347thjyF688yFmzZC9e5fPD12HAR1m6_BjXGuzT9-ZkM2w6-I9uWlMF_HhMsfke_76NVvmq_XibTZd5YYJlfIKlCy5ssOiOG2QAxOSNYbVRm6gplzWSqBBwapSIEIJFTSl3LCaMaxQsjF5Ot_1MbU62jah3VrvHNqkKVdUMDGU-Llkg48xYKP3oe1NOGoK-mRMD8b0nzF9MTZw9Myd4p0_BDe88g_zC-dwcqA</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Jones, Austin L</creator><creator>Zheng, Zilong</creator><creator>Riley, Parand</creator><creator>Pelse, Ian</creator><creator>Zhang, Junxiang</creator><creator>Abdelsamie, Maged</creator><creator>Toney, Michael F</creator><creator>Marder, Seth R</creator><creator>So, Franky</creator><creator>Brédas, Jean-Luc</creator><creator>Reynolds, John R</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7417-4869</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0001-6921-2536</orcidid><orcidid>https://orcid.org/0000-0001-7278-4471</orcidid><orcidid>https://orcid.org/0000000172784471</orcidid><orcidid>https://orcid.org/000000028310677X</orcidid><orcidid>https://orcid.org/0000000169212536</orcidid><orcidid>https://orcid.org/0000000275131166</orcidid><orcidid>https://orcid.org/0000000274174869</orcidid></search><sort><creationdate>20191210</creationdate><title>Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells</title><author>Jones, Austin L ; Zheng, Zilong ; Riley, Parand ; Pelse, Ian ; Zhang, Junxiang ; Abdelsamie, Maged ; Toney, Michael F ; Marder, Seth R ; So, Franky ; Brédas, Jean-Luc ; Reynolds, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-8097459c369951fe503673fa3da7b0d157d96eae63846ee04080f47b3d33e8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Austin L</creatorcontrib><creatorcontrib>Zheng, Zilong</creatorcontrib><creatorcontrib>Riley, Parand</creatorcontrib><creatorcontrib>Pelse, Ian</creatorcontrib><creatorcontrib>Zhang, Junxiang</creatorcontrib><creatorcontrib>Abdelsamie, Maged</creatorcontrib><creatorcontrib>Toney, Michael F</creatorcontrib><creatorcontrib>Marder, Seth R</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>Reynolds, John R</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Austin L</au><au>Zheng, Zilong</au><au>Riley, Parand</au><au>Pelse, Ian</au><au>Zhang, Junxiang</au><au>Abdelsamie, Maged</au><au>Toney, Michael F</au><au>Marder, Seth R</au><au>So, Franky</au><au>Brédas, Jean-Luc</au><au>Reynolds, John R</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>31</volume><issue>23</issue><spage>9729</spage><epage>9741</epage><pages>9729-9741</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the design of materials that may circumvent this tradeoff, eight structurally similar polymers were synthesized consisting of a fluorinated/non-fluorinated benzothiadiazole (BTDF/BTD) strong acceptor moiety, a thiophene ester (TE) weak acceptor, and various donor units composed of bithiophene (T2), biEDOT, and benzodithiophene (BDT) to form six acceptor gradient and two nongradient polymers. The acceptor gradient motif was designed and theorized to induce more facile exciton dissociation in low driving force solar cells by creating a further separated intramolecular charge-transfer state between the strong BTD acceptor and various donor units through a bridging TE component. Solar cells were fabricated using the eight polymers blended with phenyl-C71-butyric-acid methyl ester (PC71BM) to reveal two top performing isomeric polymers, T2-BTDF-(TE2) and TE2-BTDF-(T2), which were further tested with several non-fullerene acceptors (NFAs): EH-IDTBR, ITIC, and ITIC-4F. In order to fabricate optimally performing solar cells, a 0.2 eV ionization energy offset was found to be essential or the short-circuit current of the NFA cells diminished dramatically. Ultimately, optimized NFA solar cells were fabricated using ITIC-4F paired with each of the top performing polymers to produce an average PCE of 7.3% for TE2-BTDF-(T2) (nongradient) and 3.6% for T2-BTDF-(TE2) (gradient). The acceptor gradient effect was not shown to reduce the amount of charge recombination in NFA solar cells mainly due to the inability to fabricate solar cells, with minimal ionization energy or electron affinity offsets along with morphological complications. This work stresses the importance of acquiring accurate ionization energies and electron affinities when characterizing solar cell energetics, as differences as small as 0.1 eV in the offsets can make a significant impact on overall charge collection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b03327</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7417-4869</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0001-6921-2536</orcidid><orcidid>https://orcid.org/0000-0001-7278-4471</orcidid><orcidid>https://orcid.org/0000000172784471</orcidid><orcidid>https://orcid.org/000000028310677X</orcidid><orcidid>https://orcid.org/0000000169212536</orcidid><orcidid>https://orcid.org/0000000275131166</orcidid><orcidid>https://orcid.org/0000000274174869</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2019-12, Vol.31 (23), p.9729-9741
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1591636
source ACS Publications
subjects MATERIALS SCIENCE
title Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceptor%20Gradient%20Polymer%20Donors%20for%20Non-Fullerene%20Organic%20Solar%20Cells&rft.jtitle=Chemistry%20of%20materials&rft.au=Jones,%20Austin%20L&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-12-10&rft.volume=31&rft.issue=23&rft.spage=9729&rft.epage=9741&rft.pages=9729-9741&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b03327&rft_dat=%3Cacs_osti_%3Ea325087105%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true