Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells
In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the d...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2019-12, Vol.31 (23), p.9729-9741 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9741 |
---|---|
container_issue | 23 |
container_start_page | 9729 |
container_title | Chemistry of materials |
container_volume | 31 |
creator | Jones, Austin L Zheng, Zilong Riley, Parand Pelse, Ian Zhang, Junxiang Abdelsamie, Maged Toney, Michael F Marder, Seth R So, Franky Brédas, Jean-Luc Reynolds, John R |
description | In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the design of materials that may circumvent this tradeoff, eight structurally similar polymers were synthesized consisting of a fluorinated/non-fluorinated benzothiadiazole (BTDF/BTD) strong acceptor moiety, a thiophene ester (TE) weak acceptor, and various donor units composed of bithiophene (T2), biEDOT, and benzodithiophene (BDT) to form six acceptor gradient and two nongradient polymers. The acceptor gradient motif was designed and theorized to induce more facile exciton dissociation in low driving force solar cells by creating a further separated intramolecular charge-transfer state between the strong BTD acceptor and various donor units through a bridging TE component. Solar cells were fabricated using the eight polymers blended with phenyl-C71-butyric-acid methyl ester (PC71BM) to reveal two top performing isomeric polymers, T2-BTDF-(TE2) and TE2-BTDF-(T2), which were further tested with several non-fullerene acceptors (NFAs): EH-IDTBR, ITIC, and ITIC-4F. In order to fabricate optimally performing solar cells, a 0.2 eV ionization energy offset was found to be essential or the short-circuit current of the NFA cells diminished dramatically. Ultimately, optimized NFA solar cells were fabricated using ITIC-4F paired with each of the top performing polymers to produce an average PCE of 7.3% for TE2-BTDF-(T2) (nongradient) and 3.6% for T2-BTDF-(TE2) (gradient). The acceptor gradient effect was not shown to reduce the amount of charge recombination in NFA solar cells mainly due to the inability to fabricate solar cells, with minimal ionization energy or electron affinity offsets along with morphological complications. This work stresses the importance of acquiring accurate ionization energies and electron affinities when characterizing solar cell energetics, as differences as small as 0.1 eV in the offsets can make a significant impact on overall charge collection. |
doi_str_mv | 10.1021/acs.chemmater.9b03327 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1591636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a325087105</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-8097459c369951fe503673fa3da7b0d157d96eae63846ee04080f47b3d33e8e73</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKuPICzet042m2RzLNW2QrGCeg5pdtZu2U1Kkh769m5p8eppGP7_G5iPkEcKEwoFfTY2TuwW-94kDBO1AcYKeUVGlBeQc4DimoygUjIvJRe35C7GHQAd0GpE5lNrcZ98yBbB1C26lH347thjyF688yFmzZC9e5fPD12HAR1m6_BjXGuzT9-ZkM2w6-I9uWlMF_HhMsfke_76NVvmq_XibTZd5YYJlfIKlCy5ssOiOG2QAxOSNYbVRm6gplzWSqBBwapSIEIJFTSl3LCaMaxQsjF5Ot_1MbU62jah3VrvHNqkKVdUMDGU-Llkg48xYKP3oe1NOGoK-mRMD8b0nzF9MTZw9Myd4p0_BDe88g_zC-dwcqA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells</title><source>ACS Publications</source><creator>Jones, Austin L ; Zheng, Zilong ; Riley, Parand ; Pelse, Ian ; Zhang, Junxiang ; Abdelsamie, Maged ; Toney, Michael F ; Marder, Seth R ; So, Franky ; Brédas, Jean-Luc ; Reynolds, John R</creator><creatorcontrib>Jones, Austin L ; Zheng, Zilong ; Riley, Parand ; Pelse, Ian ; Zhang, Junxiang ; Abdelsamie, Maged ; Toney, Michael F ; Marder, Seth R ; So, Franky ; Brédas, Jean-Luc ; Reynolds, John R ; SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><description>In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the design of materials that may circumvent this tradeoff, eight structurally similar polymers were synthesized consisting of a fluorinated/non-fluorinated benzothiadiazole (BTDF/BTD) strong acceptor moiety, a thiophene ester (TE) weak acceptor, and various donor units composed of bithiophene (T2), biEDOT, and benzodithiophene (BDT) to form six acceptor gradient and two nongradient polymers. The acceptor gradient motif was designed and theorized to induce more facile exciton dissociation in low driving force solar cells by creating a further separated intramolecular charge-transfer state between the strong BTD acceptor and various donor units through a bridging TE component. Solar cells were fabricated using the eight polymers blended with phenyl-C71-butyric-acid methyl ester (PC71BM) to reveal two top performing isomeric polymers, T2-BTDF-(TE2) and TE2-BTDF-(T2), which were further tested with several non-fullerene acceptors (NFAs): EH-IDTBR, ITIC, and ITIC-4F. In order to fabricate optimally performing solar cells, a 0.2 eV ionization energy offset was found to be essential or the short-circuit current of the NFA cells diminished dramatically. Ultimately, optimized NFA solar cells were fabricated using ITIC-4F paired with each of the top performing polymers to produce an average PCE of 7.3% for TE2-BTDF-(T2) (nongradient) and 3.6% for T2-BTDF-(TE2) (gradient). The acceptor gradient effect was not shown to reduce the amount of charge recombination in NFA solar cells mainly due to the inability to fabricate solar cells, with minimal ionization energy or electron affinity offsets along with morphological complications. This work stresses the importance of acquiring accurate ionization energies and electron affinities when characterizing solar cell energetics, as differences as small as 0.1 eV in the offsets can make a significant impact on overall charge collection.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.9b03327</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Chemistry of materials, 2019-12, Vol.31 (23), p.9729-9741</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-8097459c369951fe503673fa3da7b0d157d96eae63846ee04080f47b3d33e8e73</citedby><cites>FETCH-LOGICAL-a369t-8097459c369951fe503673fa3da7b0d157d96eae63846ee04080f47b3d33e8e73</cites><orcidid>0000-0002-7417-4869 ; 0000-0002-8310-677X ; 0000-0002-7513-1166 ; 0000-0001-6921-2536 ; 0000-0001-7278-4471 ; 0000000172784471 ; 000000028310677X ; 0000000169212536 ; 0000000275131166 ; 0000000274174869</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.9b03327$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.9b03327$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1591636$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, Austin L</creatorcontrib><creatorcontrib>Zheng, Zilong</creatorcontrib><creatorcontrib>Riley, Parand</creatorcontrib><creatorcontrib>Pelse, Ian</creatorcontrib><creatorcontrib>Zhang, Junxiang</creatorcontrib><creatorcontrib>Abdelsamie, Maged</creatorcontrib><creatorcontrib>Toney, Michael F</creatorcontrib><creatorcontrib>Marder, Seth R</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>Reynolds, John R</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><title>Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the design of materials that may circumvent this tradeoff, eight structurally similar polymers were synthesized consisting of a fluorinated/non-fluorinated benzothiadiazole (BTDF/BTD) strong acceptor moiety, a thiophene ester (TE) weak acceptor, and various donor units composed of bithiophene (T2), biEDOT, and benzodithiophene (BDT) to form six acceptor gradient and two nongradient polymers. The acceptor gradient motif was designed and theorized to induce more facile exciton dissociation in low driving force solar cells by creating a further separated intramolecular charge-transfer state between the strong BTD acceptor and various donor units through a bridging TE component. Solar cells were fabricated using the eight polymers blended with phenyl-C71-butyric-acid methyl ester (PC71BM) to reveal two top performing isomeric polymers, T2-BTDF-(TE2) and TE2-BTDF-(T2), which were further tested with several non-fullerene acceptors (NFAs): EH-IDTBR, ITIC, and ITIC-4F. In order to fabricate optimally performing solar cells, a 0.2 eV ionization energy offset was found to be essential or the short-circuit current of the NFA cells diminished dramatically. Ultimately, optimized NFA solar cells were fabricated using ITIC-4F paired with each of the top performing polymers to produce an average PCE of 7.3% for TE2-BTDF-(T2) (nongradient) and 3.6% for T2-BTDF-(TE2) (gradient). The acceptor gradient effect was not shown to reduce the amount of charge recombination in NFA solar cells mainly due to the inability to fabricate solar cells, with minimal ionization energy or electron affinity offsets along with morphological complications. This work stresses the importance of acquiring accurate ionization energies and electron affinities when characterizing solar cell energetics, as differences as small as 0.1 eV in the offsets can make a significant impact on overall charge collection.</description><subject>MATERIALS SCIENCE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKuPICzet042m2RzLNW2QrGCeg5pdtZu2U1Kkh769m5p8eppGP7_G5iPkEcKEwoFfTY2TuwW-94kDBO1AcYKeUVGlBeQc4DimoygUjIvJRe35C7GHQAd0GpE5lNrcZ98yBbB1C26lH347thjyF688yFmzZC9e5fPD12HAR1m6_BjXGuzT9-ZkM2w6-I9uWlMF_HhMsfke_76NVvmq_XibTZd5YYJlfIKlCy5ssOiOG2QAxOSNYbVRm6gplzWSqBBwapSIEIJFTSl3LCaMaxQsjF5Ot_1MbU62jah3VrvHNqkKVdUMDGU-Llkg48xYKP3oe1NOGoK-mRMD8b0nzF9MTZw9Myd4p0_BDe88g_zC-dwcqA</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Jones, Austin L</creator><creator>Zheng, Zilong</creator><creator>Riley, Parand</creator><creator>Pelse, Ian</creator><creator>Zhang, Junxiang</creator><creator>Abdelsamie, Maged</creator><creator>Toney, Michael F</creator><creator>Marder, Seth R</creator><creator>So, Franky</creator><creator>Brédas, Jean-Luc</creator><creator>Reynolds, John R</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7417-4869</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0001-6921-2536</orcidid><orcidid>https://orcid.org/0000-0001-7278-4471</orcidid><orcidid>https://orcid.org/0000000172784471</orcidid><orcidid>https://orcid.org/000000028310677X</orcidid><orcidid>https://orcid.org/0000000169212536</orcidid><orcidid>https://orcid.org/0000000275131166</orcidid><orcidid>https://orcid.org/0000000274174869</orcidid></search><sort><creationdate>20191210</creationdate><title>Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells</title><author>Jones, Austin L ; Zheng, Zilong ; Riley, Parand ; Pelse, Ian ; Zhang, Junxiang ; Abdelsamie, Maged ; Toney, Michael F ; Marder, Seth R ; So, Franky ; Brédas, Jean-Luc ; Reynolds, John R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-8097459c369951fe503673fa3da7b0d157d96eae63846ee04080f47b3d33e8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, Austin L</creatorcontrib><creatorcontrib>Zheng, Zilong</creatorcontrib><creatorcontrib>Riley, Parand</creatorcontrib><creatorcontrib>Pelse, Ian</creatorcontrib><creatorcontrib>Zhang, Junxiang</creatorcontrib><creatorcontrib>Abdelsamie, Maged</creatorcontrib><creatorcontrib>Toney, Michael F</creatorcontrib><creatorcontrib>Marder, Seth R</creatorcontrib><creatorcontrib>So, Franky</creatorcontrib><creatorcontrib>Brédas, Jean-Luc</creatorcontrib><creatorcontrib>Reynolds, John R</creatorcontrib><creatorcontrib>SLAC National Accelerator Lab., Menlo Park, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, Austin L</au><au>Zheng, Zilong</au><au>Riley, Parand</au><au>Pelse, Ian</au><au>Zhang, Junxiang</au><au>Abdelsamie, Maged</au><au>Toney, Michael F</au><au>Marder, Seth R</au><au>So, Franky</au><au>Brédas, Jean-Luc</au><au>Reynolds, John R</au><aucorp>SLAC National Accelerator Lab., Menlo Park, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>31</volume><issue>23</issue><spage>9729</spage><epage>9741</epage><pages>9729-9741</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>In organic solar cells, maximizing the open-circuit voltage (V OC) via minimization of the ionization energy or electron affinity offsets of the blended donor and acceptor often comes at the expense of achieving a considerable amount of short-circuit current (J SC). To explore a hypothesis for the design of materials that may circumvent this tradeoff, eight structurally similar polymers were synthesized consisting of a fluorinated/non-fluorinated benzothiadiazole (BTDF/BTD) strong acceptor moiety, a thiophene ester (TE) weak acceptor, and various donor units composed of bithiophene (T2), biEDOT, and benzodithiophene (BDT) to form six acceptor gradient and two nongradient polymers. The acceptor gradient motif was designed and theorized to induce more facile exciton dissociation in low driving force solar cells by creating a further separated intramolecular charge-transfer state between the strong BTD acceptor and various donor units through a bridging TE component. Solar cells were fabricated using the eight polymers blended with phenyl-C71-butyric-acid methyl ester (PC71BM) to reveal two top performing isomeric polymers, T2-BTDF-(TE2) and TE2-BTDF-(T2), which were further tested with several non-fullerene acceptors (NFAs): EH-IDTBR, ITIC, and ITIC-4F. In order to fabricate optimally performing solar cells, a 0.2 eV ionization energy offset was found to be essential or the short-circuit current of the NFA cells diminished dramatically. Ultimately, optimized NFA solar cells were fabricated using ITIC-4F paired with each of the top performing polymers to produce an average PCE of 7.3% for TE2-BTDF-(T2) (nongradient) and 3.6% for T2-BTDF-(TE2) (gradient). The acceptor gradient effect was not shown to reduce the amount of charge recombination in NFA solar cells mainly due to the inability to fabricate solar cells, with minimal ionization energy or electron affinity offsets along with morphological complications. This work stresses the importance of acquiring accurate ionization energies and electron affinities when characterizing solar cell energetics, as differences as small as 0.1 eV in the offsets can make a significant impact on overall charge collection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.9b03327</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7417-4869</orcidid><orcidid>https://orcid.org/0000-0002-8310-677X</orcidid><orcidid>https://orcid.org/0000-0002-7513-1166</orcidid><orcidid>https://orcid.org/0000-0001-6921-2536</orcidid><orcidid>https://orcid.org/0000-0001-7278-4471</orcidid><orcidid>https://orcid.org/0000000172784471</orcidid><orcidid>https://orcid.org/000000028310677X</orcidid><orcidid>https://orcid.org/0000000169212536</orcidid><orcidid>https://orcid.org/0000000275131166</orcidid><orcidid>https://orcid.org/0000000274174869</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2019-12, Vol.31 (23), p.9729-9741 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1591636 |
source | ACS Publications |
subjects | MATERIALS SCIENCE |
title | Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A32%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceptor%20Gradient%20Polymer%20Donors%20for%20Non-Fullerene%20Organic%20Solar%20Cells&rft.jtitle=Chemistry%20of%20materials&rft.au=Jones,%20Austin%20L&rft.aucorp=SLAC%20National%20Accelerator%20Lab.,%20Menlo%20Park,%20CA%20(United%20States)&rft.date=2019-12-10&rft.volume=31&rft.issue=23&rft.spage=9729&rft.epage=9741&rft.pages=9729-9741&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.9b03327&rft_dat=%3Cacs_osti_%3Ea325087105%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |