Learning representations of microbe–metabolite interactions

Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks ( https://github.com/biocore/mmvec ) to estimate the conditional probability that each molecu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2019-12, Vol.16 (12), p.1306-1314
Hauptverfasser: Morton, James T., Aksenov, Alexander A., Nothias, Louis Felix, Foulds, James R., Quinn, Robert A., Badri, Michelle H., Swenson, Tami L., Van Goethem, Marc W., Northen, Trent R., Vazquez-Baeza, Yoshiki, Wang, Mingxun, Bokulich, Nicholas A., Watters, Aaron, Song, Se Jin, Bonneau, Richard, Dorrestein, Pieter C., Knight, Rob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1314
container_issue 12
container_start_page 1306
container_title Nature methods
container_volume 16
creator Morton, James T.
Aksenov, Alexander A.
Nothias, Louis Felix
Foulds, James R.
Quinn, Robert A.
Badri, Michelle H.
Swenson, Tami L.
Van Goethem, Marc W.
Northen, Trent R.
Vazquez-Baeza, Yoshiki
Wang, Mingxun
Bokulich, Nicholas A.
Watters, Aaron
Song, Se Jin
Bonneau, Richard
Dorrestein, Pieter C.
Knight, Rob
description Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks ( https://github.com/biocore/mmvec ) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe–metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease. mmvec, a neural-network-based algorithm, uses paired multiomics data (microbial sequence counts and metabolite abundances) to compute the conditional probability of observing a metabolite in the presence of a specific microorganism.
doi_str_mv 10.1038/s41592-019-0616-3
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1582030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A607414422</galeid><sourcerecordid>A607414422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-56a4b1afdcfed6461b952fc9865e3ac4a0875f02aea2329e80f7ad98d3166bb43</originalsourceid><addsrcrecordid>eNp1kb1OHDEUha0oUSDAA6RBK2hohvh_PAUFQiFBWomG1JbHc70xmrEX21vQ5R3yhjxJvMySKCiRC1vX3zm69x6EPhJ8TjBTnzInoqMNJl2DJZENe4P2ieCqaQkWb1_euCN76EPO9xgzxql4j_YYkUpWh310sQSTgg-rRYJ1ggyhmOJjyIvoFpO3Kfbw9OPnBMX0cfQFFj4USMY-Q4fonTNjhqPdfYC-XX--u_raLG-_3FxdLhsrWlEaIQ3viXGDdTBILknfCepsp6QAZiw3WLXCYWrAUEY7UNi1ZujUUPuUfc_ZATqZfWMuXmdb-7DfbQwBbNFEKIoZrtDZDK1TfNhALnry2cI4mgBxkzVlhNKWUdFW9PQVeh83KdQRtlTHFWmfDXfUyoygfXCx1MG3pvpS4pYTzimt1Pk_qHoGqPuLAZyv9b8EZBbU5eacwOl18pNJj5pgvc1Vz7nqmqve5qpZ1RzvGt70Ewy_FS9BVoDOQK5fYQXpz0T_d_0FIv2r8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2319481730</pqid></control><display><type>article</type><title>Learning representations of microbe–metabolite interactions</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Morton, James T. ; Aksenov, Alexander A. ; Nothias, Louis Felix ; Foulds, James R. ; Quinn, Robert A. ; Badri, Michelle H. ; Swenson, Tami L. ; Van Goethem, Marc W. ; Northen, Trent R. ; Vazquez-Baeza, Yoshiki ; Wang, Mingxun ; Bokulich, Nicholas A. ; Watters, Aaron ; Song, Se Jin ; Bonneau, Richard ; Dorrestein, Pieter C. ; Knight, Rob</creator><creatorcontrib>Morton, James T. ; Aksenov, Alexander A. ; Nothias, Louis Felix ; Foulds, James R. ; Quinn, Robert A. ; Badri, Michelle H. ; Swenson, Tami L. ; Van Goethem, Marc W. ; Northen, Trent R. ; Vazquez-Baeza, Yoshiki ; Wang, Mingxun ; Bokulich, Nicholas A. ; Watters, Aaron ; Song, Se Jin ; Bonneau, Richard ; Dorrestein, Pieter C. ; Knight, Rob ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks ( https://github.com/biocore/mmvec ) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe–metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease. mmvec, a neural-network-based algorithm, uses paired multiomics data (microbial sequence counts and metabolite abundances) to compute the conditional probability of observing a metabolite in the presence of a specific microorganism.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-019-0616-3</identifier><identifier>PMID: 31686038</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 631/114/2401 ; 631/326/2565 ; 631/92/320 ; Animals ; Bacteria - metabolism ; BASIC BIOLOGICAL SCIENCES ; Benchmarking ; Bioengineering ; Bioinformatics ; Biological Microscopy ; Biological Techniques ; Biology ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Conditional probability ; Cyanobacteria - metabolism ; Cystic fibrosis ; Cystic Fibrosis - microbiology ; Data integration ; Datasets ; Desert environments ; Desert soils ; Gastrointestinal diseases ; Inflammatory bowel diseases ; Inflammatory Bowel Diseases - microbiology ; Intestine ; Life Sciences ; Machine learning ; Mass spectrometry ; Metabolites ; Metabolomics ; Mice ; Microbial communities ; Microbiomes ; Microbiota ; Microorganisms ; Neural networks ; Neural Networks, Computer ; Pathogens ; Proteomics ; Pseudomonas aeruginosa - metabolism ; Sandy soils ; Science ; Scientific imaging ; Statistical analysis ; Wetting</subject><ispartof>Nature methods, 2019-12, Vol.16 (12), p.1306-1314</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>COPYRIGHT 2019 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Dec 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-56a4b1afdcfed6461b952fc9865e3ac4a0875f02aea2329e80f7ad98d3166bb43</citedby><cites>FETCH-LOGICAL-c575t-56a4b1afdcfed6461b952fc9865e3ac4a0875f02aea2329e80f7ad98d3166bb43</cites><orcidid>0000-0002-9445-2248 ; 0000-0002-0975-9019 ; 0000-0003-0750-5709 ; 0000-0002-3003-1030 ; 0000-0003-3189-2681 ; 0000-0001-8404-3259 ; 0000000184043259 ; 0000000230031030 ; 0000000209759019 ; 0000000307505709 ; 0000000294452248 ; 0000000331892681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-019-0616-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-019-0616-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31686038$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1582030$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morton, James T.</creatorcontrib><creatorcontrib>Aksenov, Alexander A.</creatorcontrib><creatorcontrib>Nothias, Louis Felix</creatorcontrib><creatorcontrib>Foulds, James R.</creatorcontrib><creatorcontrib>Quinn, Robert A.</creatorcontrib><creatorcontrib>Badri, Michelle H.</creatorcontrib><creatorcontrib>Swenson, Tami L.</creatorcontrib><creatorcontrib>Van Goethem, Marc W.</creatorcontrib><creatorcontrib>Northen, Trent R.</creatorcontrib><creatorcontrib>Vazquez-Baeza, Yoshiki</creatorcontrib><creatorcontrib>Wang, Mingxun</creatorcontrib><creatorcontrib>Bokulich, Nicholas A.</creatorcontrib><creatorcontrib>Watters, Aaron</creatorcontrib><creatorcontrib>Song, Se Jin</creatorcontrib><creatorcontrib>Bonneau, Richard</creatorcontrib><creatorcontrib>Dorrestein, Pieter C.</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Learning representations of microbe–metabolite interactions</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks ( https://github.com/biocore/mmvec ) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe–metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease. mmvec, a neural-network-based algorithm, uses paired multiomics data (microbial sequence counts and metabolite abundances) to compute the conditional probability of observing a metabolite in the presence of a specific microorganism.</description><subject>631/114/1305</subject><subject>631/114/2401</subject><subject>631/326/2565</subject><subject>631/92/320</subject><subject>Animals</subject><subject>Bacteria - metabolism</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Benchmarking</subject><subject>Bioengineering</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Techniques</subject><subject>Biology</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Conditional probability</subject><subject>Cyanobacteria - metabolism</subject><subject>Cystic fibrosis</subject><subject>Cystic Fibrosis - microbiology</subject><subject>Data integration</subject><subject>Datasets</subject><subject>Desert environments</subject><subject>Desert soils</subject><subject>Gastrointestinal diseases</subject><subject>Inflammatory bowel diseases</subject><subject>Inflammatory Bowel Diseases - microbiology</subject><subject>Intestine</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Mass spectrometry</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Microbial communities</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Pathogens</subject><subject>Proteomics</subject><subject>Pseudomonas aeruginosa - metabolism</subject><subject>Sandy soils</subject><subject>Science</subject><subject>Scientific imaging</subject><subject>Statistical analysis</subject><subject>Wetting</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kb1OHDEUha0oUSDAA6RBK2hohvh_PAUFQiFBWomG1JbHc70xmrEX21vQ5R3yhjxJvMySKCiRC1vX3zm69x6EPhJ8TjBTnzInoqMNJl2DJZENe4P2ieCqaQkWb1_euCN76EPO9xgzxql4j_YYkUpWh310sQSTgg-rRYJ1ggyhmOJjyIvoFpO3Kfbw9OPnBMX0cfQFFj4USMY-Q4fonTNjhqPdfYC-XX--u_raLG-_3FxdLhsrWlEaIQ3viXGDdTBILknfCepsp6QAZiw3WLXCYWrAUEY7UNi1ZujUUPuUfc_ZATqZfWMuXmdb-7DfbQwBbNFEKIoZrtDZDK1TfNhALnry2cI4mgBxkzVlhNKWUdFW9PQVeh83KdQRtlTHFWmfDXfUyoygfXCx1MG3pvpS4pYTzimt1Pk_qHoGqPuLAZyv9b8EZBbU5eacwOl18pNJj5pgvc1Vz7nqmqve5qpZ1RzvGt70Ewy_FS9BVoDOQK5fYQXpz0T_d_0FIv2r8A</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Morton, James T.</creator><creator>Aksenov, Alexander A.</creator><creator>Nothias, Louis Felix</creator><creator>Foulds, James R.</creator><creator>Quinn, Robert A.</creator><creator>Badri, Michelle H.</creator><creator>Swenson, Tami L.</creator><creator>Van Goethem, Marc W.</creator><creator>Northen, Trent R.</creator><creator>Vazquez-Baeza, Yoshiki</creator><creator>Wang, Mingxun</creator><creator>Bokulich, Nicholas A.</creator><creator>Watters, Aaron</creator><creator>Song, Se Jin</creator><creator>Bonneau, Richard</creator><creator>Dorrestein, Pieter C.</creator><creator>Knight, Rob</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9445-2248</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><orcidid>https://orcid.org/0000-0003-0750-5709</orcidid><orcidid>https://orcid.org/0000-0002-3003-1030</orcidid><orcidid>https://orcid.org/0000-0003-3189-2681</orcidid><orcidid>https://orcid.org/0000-0001-8404-3259</orcidid><orcidid>https://orcid.org/0000000184043259</orcidid><orcidid>https://orcid.org/0000000230031030</orcidid><orcidid>https://orcid.org/0000000209759019</orcidid><orcidid>https://orcid.org/0000000307505709</orcidid><orcidid>https://orcid.org/0000000294452248</orcidid><orcidid>https://orcid.org/0000000331892681</orcidid></search><sort><creationdate>20191201</creationdate><title>Learning representations of microbe–metabolite interactions</title><author>Morton, James T. ; Aksenov, Alexander A. ; Nothias, Louis Felix ; Foulds, James R. ; Quinn, Robert A. ; Badri, Michelle H. ; Swenson, Tami L. ; Van Goethem, Marc W. ; Northen, Trent R. ; Vazquez-Baeza, Yoshiki ; Wang, Mingxun ; Bokulich, Nicholas A. ; Watters, Aaron ; Song, Se Jin ; Bonneau, Richard ; Dorrestein, Pieter C. ; Knight, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-56a4b1afdcfed6461b952fc9865e3ac4a0875f02aea2329e80f7ad98d3166bb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/1305</topic><topic>631/114/2401</topic><topic>631/326/2565</topic><topic>631/92/320</topic><topic>Animals</topic><topic>Bacteria - metabolism</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Benchmarking</topic><topic>Bioengineering</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Techniques</topic><topic>Biology</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Conditional probability</topic><topic>Cyanobacteria - metabolism</topic><topic>Cystic fibrosis</topic><topic>Cystic Fibrosis - microbiology</topic><topic>Data integration</topic><topic>Datasets</topic><topic>Desert environments</topic><topic>Desert soils</topic><topic>Gastrointestinal diseases</topic><topic>Inflammatory bowel diseases</topic><topic>Inflammatory Bowel Diseases - microbiology</topic><topic>Intestine</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Mass spectrometry</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Microbial communities</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Pathogens</topic><topic>Proteomics</topic><topic>Pseudomonas aeruginosa - metabolism</topic><topic>Sandy soils</topic><topic>Science</topic><topic>Scientific imaging</topic><topic>Statistical analysis</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morton, James T.</creatorcontrib><creatorcontrib>Aksenov, Alexander A.</creatorcontrib><creatorcontrib>Nothias, Louis Felix</creatorcontrib><creatorcontrib>Foulds, James R.</creatorcontrib><creatorcontrib>Quinn, Robert A.</creatorcontrib><creatorcontrib>Badri, Michelle H.</creatorcontrib><creatorcontrib>Swenson, Tami L.</creatorcontrib><creatorcontrib>Van Goethem, Marc W.</creatorcontrib><creatorcontrib>Northen, Trent R.</creatorcontrib><creatorcontrib>Vazquez-Baeza, Yoshiki</creatorcontrib><creatorcontrib>Wang, Mingxun</creatorcontrib><creatorcontrib>Bokulich, Nicholas A.</creatorcontrib><creatorcontrib>Watters, Aaron</creatorcontrib><creatorcontrib>Song, Se Jin</creatorcontrib><creatorcontrib>Bonneau, Richard</creatorcontrib><creatorcontrib>Dorrestein, Pieter C.</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morton, James T.</au><au>Aksenov, Alexander A.</au><au>Nothias, Louis Felix</au><au>Foulds, James R.</au><au>Quinn, Robert A.</au><au>Badri, Michelle H.</au><au>Swenson, Tami L.</au><au>Van Goethem, Marc W.</au><au>Northen, Trent R.</au><au>Vazquez-Baeza, Yoshiki</au><au>Wang, Mingxun</au><au>Bokulich, Nicholas A.</au><au>Watters, Aaron</au><au>Song, Se Jin</au><au>Bonneau, Richard</au><au>Dorrestein, Pieter C.</au><au>Knight, Rob</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning representations of microbe–metabolite interactions</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>16</volume><issue>12</issue><spage>1306</spage><epage>1314</epage><pages>1306-1314</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Integrating multiomics datasets is critical for microbiome research; however, inferring interactions across omics datasets has multiple statistical challenges. We solve this problem by using neural networks ( https://github.com/biocore/mmvec ) to estimate the conditional probability that each molecule is present given the presence of a specific microorganism. We show with known environmental (desert soil biocrust wetting) and clinical (cystic fibrosis lung) examples, our ability to recover microbe–metabolite relationships, and demonstrate how the method can discover relationships between microbially produced metabolites and inflammatory bowel disease. mmvec, a neural-network-based algorithm, uses paired multiomics data (microbial sequence counts and metabolite abundances) to compute the conditional probability of observing a metabolite in the presence of a specific microorganism.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>31686038</pmid><doi>10.1038/s41592-019-0616-3</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9445-2248</orcidid><orcidid>https://orcid.org/0000-0002-0975-9019</orcidid><orcidid>https://orcid.org/0000-0003-0750-5709</orcidid><orcidid>https://orcid.org/0000-0002-3003-1030</orcidid><orcidid>https://orcid.org/0000-0003-3189-2681</orcidid><orcidid>https://orcid.org/0000-0001-8404-3259</orcidid><orcidid>https://orcid.org/0000000184043259</orcidid><orcidid>https://orcid.org/0000000230031030</orcidid><orcidid>https://orcid.org/0000000209759019</orcidid><orcidid>https://orcid.org/0000000307505709</orcidid><orcidid>https://orcid.org/0000000294452248</orcidid><orcidid>https://orcid.org/0000000331892681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2019-12, Vol.16 (12), p.1306-1314
issn 1548-7091
1548-7105
language eng
recordid cdi_osti_scitechconnect_1582030
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/114/1305
631/114/2401
631/326/2565
631/92/320
Animals
Bacteria - metabolism
BASIC BIOLOGICAL SCIENCES
Benchmarking
Bioengineering
Bioinformatics
Biological Microscopy
Biological Techniques
Biology
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Conditional probability
Cyanobacteria - metabolism
Cystic fibrosis
Cystic Fibrosis - microbiology
Data integration
Datasets
Desert environments
Desert soils
Gastrointestinal diseases
Inflammatory bowel diseases
Inflammatory Bowel Diseases - microbiology
Intestine
Life Sciences
Machine learning
Mass spectrometry
Metabolites
Metabolomics
Mice
Microbial communities
Microbiomes
Microbiota
Microorganisms
Neural networks
Neural Networks, Computer
Pathogens
Proteomics
Pseudomonas aeruginosa - metabolism
Sandy soils
Science
Scientific imaging
Statistical analysis
Wetting
title Learning representations of microbe–metabolite interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20representations%20of%20microbe%E2%80%93metabolite%20interactions&rft.jtitle=Nature%20methods&rft.au=Morton,%20James%20T.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-12-01&rft.volume=16&rft.issue=12&rft.spage=1306&rft.epage=1314&rft.pages=1306-1314&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-019-0616-3&rft_dat=%3Cgale_osti_%3EA607414422%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2319481730&rft_id=info:pmid/31686038&rft_galeid=A607414422&rfr_iscdi=true