Substrate damage and incorporation of sapphire into barium hexaferrite films deposited by aerosol deposition

Barium Hexaferrite (BaM) grown on sapphire substrate by aerosol deposition is investigated in a subtractive wedge series to determine the extent of energetic substrate damage and indentation. Energy dispersive x-ray spectroscopy (EDS) mapping reveals Al2O3 particulates ejected from the substrate sur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2019-10, Vol.103 (3)
Hauptverfasser: Ranjit, Smriti, Law, Ka Ming, Budhathoki, Sujan, Allred, Jared M., Rosenberg, Richard A., Park, Dong‐Soo, Johnson, Scooter, Hauser, Adam J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Journal of the American Ceramic Society
container_volume 103
creator Ranjit, Smriti
Law, Ka Ming
Budhathoki, Sujan
Allred, Jared M.
Rosenberg, Richard A.
Park, Dong‐Soo
Johnson, Scooter
Hauser, Adam J.
description Barium Hexaferrite (BaM) grown on sapphire substrate by aerosol deposition is investigated in a subtractive wedge series to determine the extent of energetic substrate damage and indentation. Energy dispersive x-ray spectroscopy (EDS) mapping reveals Al2O3 particulates ejected from the substrate surface during growth. The concentration of particles is higher at the substrate-film interface but persists throughout the 6 mu m thick film. An estimate of the indentation depth (similar to 600 nm) was agreed upon using two EDS techniques (line scan analysis and substrate surface reconstruction by areal integration). X-ray diffraction patterns show peak polycrystalline Al2O3 intensity in 1.5 mu m thick wedges and a decrease at higher thicknesses, confirming that Al2O3 particulate density decreases further from the substrate. Here, magnetic characterization showed decreased magnetic moment compared to bulk and thickness dependence consistent with the fractional increase of Al2O3 content in the films. X-ray absorption at the Fe L3 edge suggests a reduction of material close to the surface, but this reduction appears secondary in magnitude to the effect of damage from deposition.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1582015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1582015</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15820153</originalsourceid><addsrcrecordid>eNqNTssKwjAQDKJgffzD4r3QVKv1LIp3vcs23dpImy3ZCPr35qB3T8M8mZFKdFHoNN_r7VglWZbl6a7Ms6maiTwi1ftyk6ju8qwkeAwENfZ4J0BXg3WG_cBRtuyAGxAchtZ6ik5gqNDbZw8tvbAh720sN7brBWoaWCKtoXoDkmfh7ifGpYWaNNgJLb84V6vT8Xo4pyzB3sTEpmkNO0cm3HQR3-pi_VfoA9lAS8o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Substrate damage and incorporation of sapphire into barium hexaferrite films deposited by aerosol deposition</title><source>Wiley Online Library All Journals</source><creator>Ranjit, Smriti ; Law, Ka Ming ; Budhathoki, Sujan ; Allred, Jared M. ; Rosenberg, Richard A. ; Park, Dong‐Soo ; Johnson, Scooter ; Hauser, Adam J.</creator><creatorcontrib>Ranjit, Smriti ; Law, Ka Ming ; Budhathoki, Sujan ; Allred, Jared M. ; Rosenberg, Richard A. ; Park, Dong‐Soo ; Johnson, Scooter ; Hauser, Adam J. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Barium Hexaferrite (BaM) grown on sapphire substrate by aerosol deposition is investigated in a subtractive wedge series to determine the extent of energetic substrate damage and indentation. Energy dispersive x-ray spectroscopy (EDS) mapping reveals Al2O3 particulates ejected from the substrate surface during growth. The concentration of particles is higher at the substrate-film interface but persists throughout the 6 mu m thick film. An estimate of the indentation depth (similar to 600 nm) was agreed upon using two EDS techniques (line scan analysis and substrate surface reconstruction by areal integration). X-ray diffraction patterns show peak polycrystalline Al2O3 intensity in 1.5 mu m thick wedges and a decrease at higher thicknesses, confirming that Al2O3 particulate density decreases further from the substrate. Here, magnetic characterization showed decreased magnetic moment compared to bulk and thickness dependence consistent with the fractional increase of Al2O3 content in the films. X-ray absorption at the Fe L3 edge suggests a reduction of material close to the surface, but this reduction appears secondary in magnitude to the effect of damage from deposition.</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><language>eng</language><publisher>United States: American Ceramic Society</publisher><subject>aerosol deposition ; electron microscopy ; MATERIALS SCIENCE ; substrate deformation ; thin films ; X-ray absorption spectroscopy</subject><ispartof>Journal of the American Ceramic Society, 2019-10, Vol.103 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000278901293 ; 0000000317520937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1582015$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ranjit, Smriti</creatorcontrib><creatorcontrib>Law, Ka Ming</creatorcontrib><creatorcontrib>Budhathoki, Sujan</creatorcontrib><creatorcontrib>Allred, Jared M.</creatorcontrib><creatorcontrib>Rosenberg, Richard A.</creatorcontrib><creatorcontrib>Park, Dong‐Soo</creatorcontrib><creatorcontrib>Johnson, Scooter</creatorcontrib><creatorcontrib>Hauser, Adam J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Substrate damage and incorporation of sapphire into barium hexaferrite films deposited by aerosol deposition</title><title>Journal of the American Ceramic Society</title><description>Barium Hexaferrite (BaM) grown on sapphire substrate by aerosol deposition is investigated in a subtractive wedge series to determine the extent of energetic substrate damage and indentation. Energy dispersive x-ray spectroscopy (EDS) mapping reveals Al2O3 particulates ejected from the substrate surface during growth. The concentration of particles is higher at the substrate-film interface but persists throughout the 6 mu m thick film. An estimate of the indentation depth (similar to 600 nm) was agreed upon using two EDS techniques (line scan analysis and substrate surface reconstruction by areal integration). X-ray diffraction patterns show peak polycrystalline Al2O3 intensity in 1.5 mu m thick wedges and a decrease at higher thicknesses, confirming that Al2O3 particulate density decreases further from the substrate. Here, magnetic characterization showed decreased magnetic moment compared to bulk and thickness dependence consistent with the fractional increase of Al2O3 content in the films. X-ray absorption at the Fe L3 edge suggests a reduction of material close to the surface, but this reduction appears secondary in magnitude to the effect of damage from deposition.</description><subject>aerosol deposition</subject><subject>electron microscopy</subject><subject>MATERIALS SCIENCE</subject><subject>substrate deformation</subject><subject>thin films</subject><subject>X-ray absorption spectroscopy</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNTssKwjAQDKJgffzD4r3QVKv1LIp3vcs23dpImy3ZCPr35qB3T8M8mZFKdFHoNN_r7VglWZbl6a7Ms6maiTwi1ftyk6ju8qwkeAwENfZ4J0BXg3WG_cBRtuyAGxAchtZ6ik5gqNDbZw8tvbAh720sN7brBWoaWCKtoXoDkmfh7ifGpYWaNNgJLb84V6vT8Xo4pyzB3sTEpmkNO0cm3HQR3-pi_VfoA9lAS8o</recordid><startdate>20191020</startdate><enddate>20191020</enddate><creator>Ranjit, Smriti</creator><creator>Law, Ka Ming</creator><creator>Budhathoki, Sujan</creator><creator>Allred, Jared M.</creator><creator>Rosenberg, Richard A.</creator><creator>Park, Dong‐Soo</creator><creator>Johnson, Scooter</creator><creator>Hauser, Adam J.</creator><general>American Ceramic Society</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000278901293</orcidid><orcidid>https://orcid.org/0000000317520937</orcidid></search><sort><creationdate>20191020</creationdate><title>Substrate damage and incorporation of sapphire into barium hexaferrite films deposited by aerosol deposition</title><author>Ranjit, Smriti ; Law, Ka Ming ; Budhathoki, Sujan ; Allred, Jared M. ; Rosenberg, Richard A. ; Park, Dong‐Soo ; Johnson, Scooter ; Hauser, Adam J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15820153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>aerosol deposition</topic><topic>electron microscopy</topic><topic>MATERIALS SCIENCE</topic><topic>substrate deformation</topic><topic>thin films</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ranjit, Smriti</creatorcontrib><creatorcontrib>Law, Ka Ming</creatorcontrib><creatorcontrib>Budhathoki, Sujan</creatorcontrib><creatorcontrib>Allred, Jared M.</creatorcontrib><creatorcontrib>Rosenberg, Richard A.</creatorcontrib><creatorcontrib>Park, Dong‐Soo</creatorcontrib><creatorcontrib>Johnson, Scooter</creatorcontrib><creatorcontrib>Hauser, Adam J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ranjit, Smriti</au><au>Law, Ka Ming</au><au>Budhathoki, Sujan</au><au>Allred, Jared M.</au><au>Rosenberg, Richard A.</au><au>Park, Dong‐Soo</au><au>Johnson, Scooter</au><au>Hauser, Adam J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate damage and incorporation of sapphire into barium hexaferrite films deposited by aerosol deposition</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2019-10-20</date><risdate>2019</risdate><volume>103</volume><issue>3</issue><issn>0002-7820</issn><eissn>1551-2916</eissn><abstract>Barium Hexaferrite (BaM) grown on sapphire substrate by aerosol deposition is investigated in a subtractive wedge series to determine the extent of energetic substrate damage and indentation. Energy dispersive x-ray spectroscopy (EDS) mapping reveals Al2O3 particulates ejected from the substrate surface during growth. The concentration of particles is higher at the substrate-film interface but persists throughout the 6 mu m thick film. An estimate of the indentation depth (similar to 600 nm) was agreed upon using two EDS techniques (line scan analysis and substrate surface reconstruction by areal integration). X-ray diffraction patterns show peak polycrystalline Al2O3 intensity in 1.5 mu m thick wedges and a decrease at higher thicknesses, confirming that Al2O3 particulate density decreases further from the substrate. Here, magnetic characterization showed decreased magnetic moment compared to bulk and thickness dependence consistent with the fractional increase of Al2O3 content in the films. X-ray absorption at the Fe L3 edge suggests a reduction of material close to the surface, but this reduction appears secondary in magnitude to the effect of damage from deposition.</abstract><cop>United States</cop><pub>American Ceramic Society</pub><orcidid>https://orcid.org/0000000278901293</orcidid><orcidid>https://orcid.org/0000000317520937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2019-10, Vol.103 (3)
issn 0002-7820
1551-2916
language eng
recordid cdi_osti_scitechconnect_1582015
source Wiley Online Library All Journals
subjects aerosol deposition
electron microscopy
MATERIALS SCIENCE
substrate deformation
thin films
X-ray absorption spectroscopy
title Substrate damage and incorporation of sapphire into barium hexaferrite films deposited by aerosol deposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A40%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20damage%20and%20incorporation%20of%20sapphire%20into%20barium%20hexaferrite%20films%20deposited%20by%20aerosol%20deposition&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Ranjit,%20Smriti&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2019-10-20&rft.volume=103&rft.issue=3&rft.issn=0002-7820&rft.eissn=1551-2916&rft_id=info:doi/&rft_dat=%3Costi%3E1582015%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true