Sulfurous and sulfonic acids: Predicting the infrared spectrum and setting the surface straight

Sulfurous acid (H2SO3) is an infamously elusive molecule. Although some theoretical papers have supposed possible roles for it in more complicated systems, it has yet to be experimentally observed. To aid experiment in detecting this molecule, we have examined the H2O + SO2 potential energy surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-01, Vol.152 (2), p.024302-024302
Hauptverfasser: Misiewicz, Jonathon P., Moore, Kevin B., Franke, Peter R., Morgan, W. James, Turney, Justin M., Douberly, Gary E., Schaefer, Henry F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 024302
container_issue 2
container_start_page 024302
container_title The Journal of chemical physics
container_volume 152
creator Misiewicz, Jonathon P.
Moore, Kevin B.
Franke, Peter R.
Morgan, W. James
Turney, Justin M.
Douberly, Gary E.
Schaefer, Henry F.
description Sulfurous acid (H2SO3) is an infamously elusive molecule. Although some theoretical papers have supposed possible roles for it in more complicated systems, it has yet to be experimentally observed. To aid experiment in detecting this molecule, we have examined the H2O + SO2 potential energy surface at the CCSDT(Q)/CBS//CCSD(T)-F12b/cc-pVTZ-F12b level of theory to resolve standing discrepancies in previous reports and predict the gas-phase vibrational spectrum for H2SO3. We find that sulfurous acid has two potentially detectable rotamers, separated by 1.1 kcal mol−1 ΔH0K with a torsional barrier of 1.6 kcal mol−1. The sulfonic acid isomer is only 6.9 kcal mol−1 above the lowest enthalpy sulfurous acid rotamer, but the barrier to form it is 57.2 kcal mol−1. Error in previous reports can be attributed to misidentified stationary points, the use of density functionals that perform poorly for this system, and, most importantly, the basis set sensitivity of sulfur. Using VPT2+K, we determine that the intense S=O stretch fundamental of each species is separated from other intense peaks by at least 25 cm−1, providing a target for identification by infrared spectroscopy.
doi_str_mv 10.1063/1.5133954
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1581668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339789852</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-1cc43d1fd6957486fc236804f26b0d285851760122c39422130945cf00f2a8033</originalsourceid><addsrcrecordid>eNp90VtrFDEUAOAgit1WH_wDMuhLFaaek9skvknxUigoqM8hzSTdlN3MmmQK_nuzzFpBaJ8OCd85nAshLxDOECR7h2cCGdOCPyIrBKX7QWp4TFYAFHstQR6R41JuAAAHyp-SI4aatwy5Iub7vAlznubS2TR2pb2mFF1nXRzL--5b9mN0Nabrrq59F1PItn11ZeddzfN2SfL1TpQ5B-tarNnG63V9Rp4Euyn--SGekJ-fPv44_9Jffv18cf7hsneci9qjc5yNGEapxcCVDI4yqYAHKq9gpEoogYMEpNQxzSlFBpoLFwACtQoYOyGvlrpTqdEUF6t3azel1Po0KBRKqRo6XdAuT79mX6rZxuL8ZmOTbxswtC1xUFoJ2ujr_-jNNOfURtgrrjjSQTT1ZlEuT6VkH8wux63Nvw2C2Z_GoDmcptmXh4rz1daPd_LvLRp4u4B997bGKT1Y7V58O-V_0OzGwP4ASpmiMg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334841275</pqid></control><display><type>article</type><title>Sulfurous and sulfonic acids: Predicting the infrared spectrum and setting the surface straight</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Misiewicz, Jonathon P. ; Moore, Kevin B. ; Franke, Peter R. ; Morgan, W. James ; Turney, Justin M. ; Douberly, Gary E. ; Schaefer, Henry F.</creator><creatorcontrib>Misiewicz, Jonathon P. ; Moore, Kevin B. ; Franke, Peter R. ; Morgan, W. James ; Turney, Justin M. ; Douberly, Gary E. ; Schaefer, Henry F.</creatorcontrib><description>Sulfurous acid (H2SO3) is an infamously elusive molecule. Although some theoretical papers have supposed possible roles for it in more complicated systems, it has yet to be experimentally observed. To aid experiment in detecting this molecule, we have examined the H2O + SO2 potential energy surface at the CCSDT(Q)/CBS//CCSD(T)-F12b/cc-pVTZ-F12b level of theory to resolve standing discrepancies in previous reports and predict the gas-phase vibrational spectrum for H2SO3. We find that sulfurous acid has two potentially detectable rotamers, separated by 1.1 kcal mol−1 ΔH0K with a torsional barrier of 1.6 kcal mol−1. The sulfonic acid isomer is only 6.9 kcal mol−1 above the lowest enthalpy sulfurous acid rotamer, but the barrier to form it is 57.2 kcal mol−1. Error in previous reports can be attributed to misidentified stationary points, the use of density functionals that perform poorly for this system, and, most importantly, the basis set sensitivity of sulfur. Using VPT2+K, we determine that the intense S=O stretch fundamental of each species is separated from other intense peaks by at least 25 cm−1, providing a target for identification by infrared spectroscopy.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.5133954</identifier><identifier>PMID: 31941336</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Acids ; Enthalpy ; Infrared radiation ; Potential energy ; Spectrum analysis ; Sulfonic acid ; Target recognition</subject><ispartof>The Journal of chemical physics, 2020-01, Vol.152 (2), p.024302-024302</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-1cc43d1fd6957486fc236804f26b0d285851760122c39422130945cf00f2a8033</citedby><cites>FETCH-LOGICAL-c445t-1cc43d1fd6957486fc236804f26b0d285851760122c39422130945cf00f2a8033</cites><orcidid>0000-0002-9763-2594 ; 0000-0003-3659-0711 ; 0000-0001-6530-7466 ; 0000-0002-6425-9551 ; 0000-0001-9781-3179 ; 0000-0002-5914-0943 ; 0000-0003-0252-2083 ; 0000000336590711 ; 0000000165307466 ; 0000000197813179 ; 0000000264259551 ; 0000000297632594 ; 0000000302522083 ; 0000000259140943</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/1.5133954$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31941336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1581668$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Misiewicz, Jonathon P.</creatorcontrib><creatorcontrib>Moore, Kevin B.</creatorcontrib><creatorcontrib>Franke, Peter R.</creatorcontrib><creatorcontrib>Morgan, W. James</creatorcontrib><creatorcontrib>Turney, Justin M.</creatorcontrib><creatorcontrib>Douberly, Gary E.</creatorcontrib><creatorcontrib>Schaefer, Henry F.</creatorcontrib><title>Sulfurous and sulfonic acids: Predicting the infrared spectrum and setting the surface straight</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Sulfurous acid (H2SO3) is an infamously elusive molecule. Although some theoretical papers have supposed possible roles for it in more complicated systems, it has yet to be experimentally observed. To aid experiment in detecting this molecule, we have examined the H2O + SO2 potential energy surface at the CCSDT(Q)/CBS//CCSD(T)-F12b/cc-pVTZ-F12b level of theory to resolve standing discrepancies in previous reports and predict the gas-phase vibrational spectrum for H2SO3. We find that sulfurous acid has two potentially detectable rotamers, separated by 1.1 kcal mol−1 ΔH0K with a torsional barrier of 1.6 kcal mol−1. The sulfonic acid isomer is only 6.9 kcal mol−1 above the lowest enthalpy sulfurous acid rotamer, but the barrier to form it is 57.2 kcal mol−1. Error in previous reports can be attributed to misidentified stationary points, the use of density functionals that perform poorly for this system, and, most importantly, the basis set sensitivity of sulfur. Using VPT2+K, we determine that the intense S=O stretch fundamental of each species is separated from other intense peaks by at least 25 cm−1, providing a target for identification by infrared spectroscopy.</description><subject>Acids</subject><subject>Enthalpy</subject><subject>Infrared radiation</subject><subject>Potential energy</subject><subject>Spectrum analysis</subject><subject>Sulfonic acid</subject><subject>Target recognition</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90VtrFDEUAOAgit1WH_wDMuhLFaaek9skvknxUigoqM8hzSTdlN3MmmQK_nuzzFpBaJ8OCd85nAshLxDOECR7h2cCGdOCPyIrBKX7QWp4TFYAFHstQR6R41JuAAAHyp-SI4aatwy5Iub7vAlznubS2TR2pb2mFF1nXRzL--5b9mN0Nabrrq59F1PItn11ZeddzfN2SfL1TpQ5B-tarNnG63V9Rp4Euyn--SGekJ-fPv44_9Jffv18cf7hsneci9qjc5yNGEapxcCVDI4yqYAHKq9gpEoogYMEpNQxzSlFBpoLFwACtQoYOyGvlrpTqdEUF6t3azel1Po0KBRKqRo6XdAuT79mX6rZxuL8ZmOTbxswtC1xUFoJ2ujr_-jNNOfURtgrrjjSQTT1ZlEuT6VkH8wux63Nvw2C2Z_GoDmcptmXh4rz1daPd_LvLRp4u4B997bGKT1Y7V58O-V_0OzGwP4ASpmiMg</recordid><startdate>20200114</startdate><enddate>20200114</enddate><creator>Misiewicz, Jonathon P.</creator><creator>Moore, Kevin B.</creator><creator>Franke, Peter R.</creator><creator>Morgan, W. James</creator><creator>Turney, Justin M.</creator><creator>Douberly, Gary E.</creator><creator>Schaefer, Henry F.</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9763-2594</orcidid><orcidid>https://orcid.org/0000-0003-3659-0711</orcidid><orcidid>https://orcid.org/0000-0001-6530-7466</orcidid><orcidid>https://orcid.org/0000-0002-6425-9551</orcidid><orcidid>https://orcid.org/0000-0001-9781-3179</orcidid><orcidid>https://orcid.org/0000-0002-5914-0943</orcidid><orcidid>https://orcid.org/0000-0003-0252-2083</orcidid><orcidid>https://orcid.org/0000000336590711</orcidid><orcidid>https://orcid.org/0000000165307466</orcidid><orcidid>https://orcid.org/0000000197813179</orcidid><orcidid>https://orcid.org/0000000264259551</orcidid><orcidid>https://orcid.org/0000000297632594</orcidid><orcidid>https://orcid.org/0000000302522083</orcidid><orcidid>https://orcid.org/0000000259140943</orcidid></search><sort><creationdate>20200114</creationdate><title>Sulfurous and sulfonic acids: Predicting the infrared spectrum and setting the surface straight</title><author>Misiewicz, Jonathon P. ; Moore, Kevin B. ; Franke, Peter R. ; Morgan, W. James ; Turney, Justin M. ; Douberly, Gary E. ; Schaefer, Henry F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-1cc43d1fd6957486fc236804f26b0d285851760122c39422130945cf00f2a8033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acids</topic><topic>Enthalpy</topic><topic>Infrared radiation</topic><topic>Potential energy</topic><topic>Spectrum analysis</topic><topic>Sulfonic acid</topic><topic>Target recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Misiewicz, Jonathon P.</creatorcontrib><creatorcontrib>Moore, Kevin B.</creatorcontrib><creatorcontrib>Franke, Peter R.</creatorcontrib><creatorcontrib>Morgan, W. James</creatorcontrib><creatorcontrib>Turney, Justin M.</creatorcontrib><creatorcontrib>Douberly, Gary E.</creatorcontrib><creatorcontrib>Schaefer, Henry F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Misiewicz, Jonathon P.</au><au>Moore, Kevin B.</au><au>Franke, Peter R.</au><au>Morgan, W. James</au><au>Turney, Justin M.</au><au>Douberly, Gary E.</au><au>Schaefer, Henry F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sulfurous and sulfonic acids: Predicting the infrared spectrum and setting the surface straight</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2020-01-14</date><risdate>2020</risdate><volume>152</volume><issue>2</issue><spage>024302</spage><epage>024302</epage><pages>024302-024302</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Sulfurous acid (H2SO3) is an infamously elusive molecule. Although some theoretical papers have supposed possible roles for it in more complicated systems, it has yet to be experimentally observed. To aid experiment in detecting this molecule, we have examined the H2O + SO2 potential energy surface at the CCSDT(Q)/CBS//CCSD(T)-F12b/cc-pVTZ-F12b level of theory to resolve standing discrepancies in previous reports and predict the gas-phase vibrational spectrum for H2SO3. We find that sulfurous acid has two potentially detectable rotamers, separated by 1.1 kcal mol−1 ΔH0K with a torsional barrier of 1.6 kcal mol−1. The sulfonic acid isomer is only 6.9 kcal mol−1 above the lowest enthalpy sulfurous acid rotamer, but the barrier to form it is 57.2 kcal mol−1. Error in previous reports can be attributed to misidentified stationary points, the use of density functionals that perform poorly for this system, and, most importantly, the basis set sensitivity of sulfur. Using VPT2+K, we determine that the intense S=O stretch fundamental of each species is separated from other intense peaks by at least 25 cm−1, providing a target for identification by infrared spectroscopy.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>31941336</pmid><doi>10.1063/1.5133954</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-9763-2594</orcidid><orcidid>https://orcid.org/0000-0003-3659-0711</orcidid><orcidid>https://orcid.org/0000-0001-6530-7466</orcidid><orcidid>https://orcid.org/0000-0002-6425-9551</orcidid><orcidid>https://orcid.org/0000-0001-9781-3179</orcidid><orcidid>https://orcid.org/0000-0002-5914-0943</orcidid><orcidid>https://orcid.org/0000-0003-0252-2083</orcidid><orcidid>https://orcid.org/0000000336590711</orcidid><orcidid>https://orcid.org/0000000165307466</orcidid><orcidid>https://orcid.org/0000000197813179</orcidid><orcidid>https://orcid.org/0000000264259551</orcidid><orcidid>https://orcid.org/0000000297632594</orcidid><orcidid>https://orcid.org/0000000302522083</orcidid><orcidid>https://orcid.org/0000000259140943</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-01, Vol.152 (2), p.024302-024302
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_1581668
source AIP Journals Complete; Alma/SFX Local Collection
subjects Acids
Enthalpy
Infrared radiation
Potential energy
Spectrum analysis
Sulfonic acid
Target recognition
title Sulfurous and sulfonic acids: Predicting the infrared spectrum and setting the surface straight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T04%3A41%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sulfurous%20and%20sulfonic%20acids:%20Predicting%20the%20infrared%20spectrum%20and%20setting%20the%20surface%20straight&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Misiewicz,%20Jonathon%20P.&rft.date=2020-01-14&rft.volume=152&rft.issue=2&rft.spage=024302&rft.epage=024302&rft.pages=024302-024302&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/1.5133954&rft_dat=%3Cproquest_osti_%3E2339789852%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2334841275&rft_id=info:pmid/31941336&rfr_iscdi=true