An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments

The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (4), p.1881-1896
Hauptverfasser: Stone-Weiss, Nicholas, Youngman, Randall E, Thorpe, Ryan, Smith, Nicholas J, Pierce, Eric M, Goel, Ashutosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1896
container_issue 4
container_start_page 1881
container_title Physical chemistry chemical physics : PCCP
container_volume 22
creator Stone-Weiss, Nicholas
Youngman, Randall E
Thorpe, Ryan
Smith, Nicholas J
Pierce, Eric M
Goel, Ashutosh
description The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO 2 -rich to B 2 O 3 -rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B 2 O 3 substitutions into nepheline (NaAlSiO 4 ) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface ( i.e. , enrichment in aluminum content upon corrosion through AlO 4 → Al(OH) 3 evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B 2 O 3 -rich and SiO 2 -rich glass compositions-albeit with vastly dissimilar r
doi_str_mv 10.1039/c9cp06064b
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1581658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347400969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-7e69619eb3e9399aaaf6e49a86993b3b3bc6890916d239d1e046b637a5c1a2f3</originalsourceid><addsrcrecordid>eNp90c9LHDEUB_AgFX_Vi_fKaC8ibE0m2cy843ZpVRDag6deQibzZjd2JlmTTMH_3mx33YKHksMLvM8LvHwJOWP0C6McbgyYFZVUimaPHDEh-QRoLT7s7pU8JMcxPlFK2ZTxA3LIGbAyDxyRXzNXWBftYplyTb5ISyyMD8FH613hu0L3v3VvcxkH63zj153eGp2wWPQ6Rox5sNDGttYU6P7Y4N2ALsWPZL_TfcTTbT0hj9-_Pc7vJg8_bu_ns4eJEWWVJhVKkAyw4QgcQGvdSRSgawnAm_UxsgYKTLYlh5YhFbKRvNJTw3TZ8RNyuXnWx2RVNDahWRrvHJqk2LRmclpndLVBq-CfR4xJDTYa7Hvt0I9RlZyLijImeaaf39EnPwaXN8hKVIJSkJDV9UaZ_B8xYKdWwQ46vChG1ToVNYf5z7-pfM34fPvk2AzY7uhbDBlcbECIZtf9F6tates9P_3P8Fc_kpwL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347400969</pqid></control><display><type>article</type><title>An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Stone-Weiss, Nicholas ; Youngman, Randall E ; Thorpe, Ryan ; Smith, Nicholas J ; Pierce, Eric M ; Goel, Ashutosh</creator><creatorcontrib>Stone-Weiss, Nicholas ; Youngman, Randall E ; Thorpe, Ryan ; Smith, Nicholas J ; Pierce, Eric M ; Goel, Ashutosh</creatorcontrib><description>The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO 2 -rich to B 2 O 3 -rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B 2 O 3 substitutions into nepheline (NaAlSiO 4 ) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface ( i.e. , enrichment in aluminum content upon corrosion through AlO 4 → Al(OH) 3 evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B 2 O 3 -rich and SiO 2 -rich glass compositions-albeit with vastly dissimilar reaction kinetics. Sodium aluminoborosilicate glasses with wide-ranging compositions and structures corrode according to remarkably similar mechanisms in acidic environments.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp06064b</identifier><identifier>PMID: 31912064</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aluminum ; Backscattering ; Biomedical materials ; Boron oxides ; Borosilicate glass ; Composition ; Corrosion ; Corrosion mechanisms ; Dissolution ; Elastic analysis ; Electronic packaging ; Literature reviews ; Nepheline ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Photoelectrons ; Radioactive wastes ; Reaction kinetics ; Recoil ; Silicon dioxide ; Sodium ; Spectrum analysis ; Touch screens ; X ray photoelectron spectroscopy</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (4), p.1881-1896</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-7e69619eb3e9399aaaf6e49a86993b3b3bc6890916d239d1e046b637a5c1a2f3</citedby><cites>FETCH-LOGICAL-c427t-7e69619eb3e9399aaaf6e49a86993b3b3bc6890916d239d1e046b637a5c1a2f3</cites><orcidid>0000-0002-4951-1931 ; 0000-0001-7139-1940 ; 0000-0002-6647-9865 ; 0000-0002-8726-9525 ; 0000-0003-0139-9503 ; 0000000171391940 ; 0000000266479865 ; 0000000287269525 ; 0000000301399503 ; 0000000249511931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31912064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1581658$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stone-Weiss, Nicholas</creatorcontrib><creatorcontrib>Youngman, Randall E</creatorcontrib><creatorcontrib>Thorpe, Ryan</creatorcontrib><creatorcontrib>Smith, Nicholas J</creatorcontrib><creatorcontrib>Pierce, Eric M</creatorcontrib><creatorcontrib>Goel, Ashutosh</creatorcontrib><title>An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO 2 -rich to B 2 O 3 -rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B 2 O 3 substitutions into nepheline (NaAlSiO 4 ) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface ( i.e. , enrichment in aluminum content upon corrosion through AlO 4 → Al(OH) 3 evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B 2 O 3 -rich and SiO 2 -rich glass compositions-albeit with vastly dissimilar reaction kinetics. Sodium aluminoborosilicate glasses with wide-ranging compositions and structures corrode according to remarkably similar mechanisms in acidic environments.</description><subject>Aluminum</subject><subject>Backscattering</subject><subject>Biomedical materials</subject><subject>Boron oxides</subject><subject>Borosilicate glass</subject><subject>Composition</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Dissolution</subject><subject>Elastic analysis</subject><subject>Electronic packaging</subject><subject>Literature reviews</subject><subject>Nepheline</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Photoelectrons</subject><subject>Radioactive wastes</subject><subject>Reaction kinetics</subject><subject>Recoil</subject><subject>Silicon dioxide</subject><subject>Sodium</subject><subject>Spectrum analysis</subject><subject>Touch screens</subject><subject>X ray photoelectron spectroscopy</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c9LHDEUB_AgFX_Vi_fKaC8ibE0m2cy843ZpVRDag6deQibzZjd2JlmTTMH_3mx33YKHksMLvM8LvHwJOWP0C6McbgyYFZVUimaPHDEh-QRoLT7s7pU8JMcxPlFK2ZTxA3LIGbAyDxyRXzNXWBftYplyTb5ISyyMD8FH613hu0L3v3VvcxkH63zj153eGp2wWPQ6Rox5sNDGttYU6P7Y4N2ALsWPZL_TfcTTbT0hj9-_Pc7vJg8_bu_ns4eJEWWVJhVKkAyw4QgcQGvdSRSgawnAm_UxsgYKTLYlh5YhFbKRvNJTw3TZ8RNyuXnWx2RVNDahWRrvHJqk2LRmclpndLVBq-CfR4xJDTYa7Hvt0I9RlZyLijImeaaf39EnPwaXN8hKVIJSkJDV9UaZ_B8xYKdWwQ46vChG1ToVNYf5z7-pfM34fPvk2AzY7uhbDBlcbECIZtf9F6tates9P_3P8Fc_kpwL</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Stone-Weiss, Nicholas</creator><creator>Youngman, Randall E</creator><creator>Thorpe, Ryan</creator><creator>Smith, Nicholas J</creator><creator>Pierce, Eric M</creator><creator>Goel, Ashutosh</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4951-1931</orcidid><orcidid>https://orcid.org/0000-0001-7139-1940</orcidid><orcidid>https://orcid.org/0000-0002-6647-9865</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-0139-9503</orcidid><orcidid>https://orcid.org/0000000171391940</orcidid><orcidid>https://orcid.org/0000000266479865</orcidid><orcidid>https://orcid.org/0000000287269525</orcidid><orcidid>https://orcid.org/0000000301399503</orcidid><orcidid>https://orcid.org/0000000249511931</orcidid></search><sort><creationdate>20200129</creationdate><title>An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments</title><author>Stone-Weiss, Nicholas ; Youngman, Randall E ; Thorpe, Ryan ; Smith, Nicholas J ; Pierce, Eric M ; Goel, Ashutosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-7e69619eb3e9399aaaf6e49a86993b3b3bc6890916d239d1e046b637a5c1a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Backscattering</topic><topic>Biomedical materials</topic><topic>Boron oxides</topic><topic>Borosilicate glass</topic><topic>Composition</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Dissolution</topic><topic>Elastic analysis</topic><topic>Electronic packaging</topic><topic>Literature reviews</topic><topic>Nepheline</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Photoelectrons</topic><topic>Radioactive wastes</topic><topic>Reaction kinetics</topic><topic>Recoil</topic><topic>Silicon dioxide</topic><topic>Sodium</topic><topic>Spectrum analysis</topic><topic>Touch screens</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stone-Weiss, Nicholas</creatorcontrib><creatorcontrib>Youngman, Randall E</creatorcontrib><creatorcontrib>Thorpe, Ryan</creatorcontrib><creatorcontrib>Smith, Nicholas J</creatorcontrib><creatorcontrib>Pierce, Eric M</creatorcontrib><creatorcontrib>Goel, Ashutosh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stone-Weiss, Nicholas</au><au>Youngman, Randall E</au><au>Thorpe, Ryan</au><au>Smith, Nicholas J</au><au>Pierce, Eric M</au><au>Goel, Ashutosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-01-29</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>1881</spage><epage>1896</epage><pages>1881-1896</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO 2 -rich to B 2 O 3 -rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B 2 O 3 substitutions into nepheline (NaAlSiO 4 ) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface ( i.e. , enrichment in aluminum content upon corrosion through AlO 4 → Al(OH) 3 evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B 2 O 3 -rich and SiO 2 -rich glass compositions-albeit with vastly dissimilar reaction kinetics. Sodium aluminoborosilicate glasses with wide-ranging compositions and structures corrode according to remarkably similar mechanisms in acidic environments.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31912064</pmid><doi>10.1039/c9cp06064b</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4951-1931</orcidid><orcidid>https://orcid.org/0000-0001-7139-1940</orcidid><orcidid>https://orcid.org/0000-0002-6647-9865</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-0139-9503</orcidid><orcidid>https://orcid.org/0000000171391940</orcidid><orcidid>https://orcid.org/0000000266479865</orcidid><orcidid>https://orcid.org/0000000287269525</orcidid><orcidid>https://orcid.org/0000000301399503</orcidid><orcidid>https://orcid.org/0000000249511931</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (4), p.1881-1896
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1581658
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Aluminum
Backscattering
Biomedical materials
Boron oxides
Borosilicate glass
Composition
Corrosion
Corrosion mechanisms
Dissolution
Elastic analysis
Electronic packaging
Literature reviews
Nepheline
NMR
Nuclear magnetic resonance
Organic chemistry
Photoelectrons
Radioactive wastes
Reaction kinetics
Recoil
Silicon dioxide
Sodium
Spectrum analysis
Touch screens
X ray photoelectron spectroscopy
title An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20insight%20into%20the%20corrosion%20of%20alkali%20aluminoborosilicate%20glasses%20in%20acidic%20environments&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Stone-Weiss,%20Nicholas&rft.date=2020-01-29&rft.volume=22&rft.issue=4&rft.spage=1881&rft.epage=1896&rft.pages=1881-1896&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp06064b&rft_dat=%3Cproquest_osti_%3E2347400969%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347400969&rft_id=info:pmid/31912064&rfr_iscdi=true