An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments
The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (4), p.1881-1896 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1896 |
---|---|
container_issue | 4 |
container_start_page | 1881 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 22 |
creator | Stone-Weiss, Nicholas Youngman, Randall E Thorpe, Ryan Smith, Nicholas J Pierce, Eric M Goel, Ashutosh |
description | The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO
2
-rich to B
2
O
3
-rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B
2
O
3
substitutions into nepheline (NaAlSiO
4
) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface (
i.e.
, enrichment in aluminum content upon corrosion through AlO
4
→ Al(OH)
3
evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B
2
O
3
-rich and SiO
2
-rich glass compositions-albeit with vastly dissimilar r |
doi_str_mv | 10.1039/c9cp06064b |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1581658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2347400969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-7e69619eb3e9399aaaf6e49a86993b3b3bc6890916d239d1e046b637a5c1a2f3</originalsourceid><addsrcrecordid>eNp90c9LHDEUB_AgFX_Vi_fKaC8ibE0m2cy843ZpVRDag6deQibzZjd2JlmTTMH_3mx33YKHksMLvM8LvHwJOWP0C6McbgyYFZVUimaPHDEh-QRoLT7s7pU8JMcxPlFK2ZTxA3LIGbAyDxyRXzNXWBftYplyTb5ISyyMD8FH613hu0L3v3VvcxkH63zj153eGp2wWPQ6Rox5sNDGttYU6P7Y4N2ALsWPZL_TfcTTbT0hj9-_Pc7vJg8_bu_ns4eJEWWVJhVKkAyw4QgcQGvdSRSgawnAm_UxsgYKTLYlh5YhFbKRvNJTw3TZ8RNyuXnWx2RVNDahWRrvHJqk2LRmclpndLVBq-CfR4xJDTYa7Hvt0I9RlZyLijImeaaf39EnPwaXN8hKVIJSkJDV9UaZ_B8xYKdWwQ46vChG1ToVNYf5z7-pfM34fPvk2AzY7uhbDBlcbECIZtf9F6tates9P_3P8Fc_kpwL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2347400969</pqid></control><display><type>article</type><title>An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Stone-Weiss, Nicholas ; Youngman, Randall E ; Thorpe, Ryan ; Smith, Nicholas J ; Pierce, Eric M ; Goel, Ashutosh</creator><creatorcontrib>Stone-Weiss, Nicholas ; Youngman, Randall E ; Thorpe, Ryan ; Smith, Nicholas J ; Pierce, Eric M ; Goel, Ashutosh</creatorcontrib><description>The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO
2
-rich to B
2
O
3
-rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B
2
O
3
substitutions into nepheline (NaAlSiO
4
) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface (
i.e.
, enrichment in aluminum content upon corrosion through AlO
4
→ Al(OH)
3
evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B
2
O
3
-rich and SiO
2
-rich glass compositions-albeit with vastly dissimilar reaction kinetics.
Sodium aluminoborosilicate glasses with wide-ranging compositions and structures corrode according to remarkably similar mechanisms in acidic environments.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c9cp06064b</identifier><identifier>PMID: 31912064</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aluminum ; Backscattering ; Biomedical materials ; Boron oxides ; Borosilicate glass ; Composition ; Corrosion ; Corrosion mechanisms ; Dissolution ; Elastic analysis ; Electronic packaging ; Literature reviews ; Nepheline ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Photoelectrons ; Radioactive wastes ; Reaction kinetics ; Recoil ; Silicon dioxide ; Sodium ; Spectrum analysis ; Touch screens ; X ray photoelectron spectroscopy</subject><ispartof>Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (4), p.1881-1896</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-7e69619eb3e9399aaaf6e49a86993b3b3bc6890916d239d1e046b637a5c1a2f3</citedby><cites>FETCH-LOGICAL-c427t-7e69619eb3e9399aaaf6e49a86993b3b3bc6890916d239d1e046b637a5c1a2f3</cites><orcidid>0000-0002-4951-1931 ; 0000-0001-7139-1940 ; 0000-0002-6647-9865 ; 0000-0002-8726-9525 ; 0000-0003-0139-9503 ; 0000000171391940 ; 0000000266479865 ; 0000000287269525 ; 0000000301399503 ; 0000000249511931</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31912064$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1581658$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stone-Weiss, Nicholas</creatorcontrib><creatorcontrib>Youngman, Randall E</creatorcontrib><creatorcontrib>Thorpe, Ryan</creatorcontrib><creatorcontrib>Smith, Nicholas J</creatorcontrib><creatorcontrib>Pierce, Eric M</creatorcontrib><creatorcontrib>Goel, Ashutosh</creatorcontrib><title>An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO
2
-rich to B
2
O
3
-rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B
2
O
3
substitutions into nepheline (NaAlSiO
4
) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface (
i.e.
, enrichment in aluminum content upon corrosion through AlO
4
→ Al(OH)
3
evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B
2
O
3
-rich and SiO
2
-rich glass compositions-albeit with vastly dissimilar reaction kinetics.
Sodium aluminoborosilicate glasses with wide-ranging compositions and structures corrode according to remarkably similar mechanisms in acidic environments.</description><subject>Aluminum</subject><subject>Backscattering</subject><subject>Biomedical materials</subject><subject>Boron oxides</subject><subject>Borosilicate glass</subject><subject>Composition</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Dissolution</subject><subject>Elastic analysis</subject><subject>Electronic packaging</subject><subject>Literature reviews</subject><subject>Nepheline</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Photoelectrons</subject><subject>Radioactive wastes</subject><subject>Reaction kinetics</subject><subject>Recoil</subject><subject>Silicon dioxide</subject><subject>Sodium</subject><subject>Spectrum analysis</subject><subject>Touch screens</subject><subject>X ray photoelectron spectroscopy</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90c9LHDEUB_AgFX_Vi_fKaC8ibE0m2cy843ZpVRDag6deQibzZjd2JlmTTMH_3mx33YKHksMLvM8LvHwJOWP0C6McbgyYFZVUimaPHDEh-QRoLT7s7pU8JMcxPlFK2ZTxA3LIGbAyDxyRXzNXWBftYplyTb5ISyyMD8FH613hu0L3v3VvcxkH63zj153eGp2wWPQ6Rox5sNDGttYU6P7Y4N2ALsWPZL_TfcTTbT0hj9-_Pc7vJg8_bu_ns4eJEWWVJhVKkAyw4QgcQGvdSRSgawnAm_UxsgYKTLYlh5YhFbKRvNJTw3TZ8RNyuXnWx2RVNDahWRrvHJqk2LRmclpndLVBq-CfR4xJDTYa7Hvt0I9RlZyLijImeaaf39EnPwaXN8hKVIJSkJDV9UaZ_B8xYKdWwQ46vChG1ToVNYf5z7-pfM34fPvk2AzY7uhbDBlcbECIZtf9F6tates9P_3P8Fc_kpwL</recordid><startdate>20200129</startdate><enddate>20200129</enddate><creator>Stone-Weiss, Nicholas</creator><creator>Youngman, Randall E</creator><creator>Thorpe, Ryan</creator><creator>Smith, Nicholas J</creator><creator>Pierce, Eric M</creator><creator>Goel, Ashutosh</creator><general>Royal Society of Chemistry</general><general>Royal Society of Chemistry (RSC)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4951-1931</orcidid><orcidid>https://orcid.org/0000-0001-7139-1940</orcidid><orcidid>https://orcid.org/0000-0002-6647-9865</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-0139-9503</orcidid><orcidid>https://orcid.org/0000000171391940</orcidid><orcidid>https://orcid.org/0000000266479865</orcidid><orcidid>https://orcid.org/0000000287269525</orcidid><orcidid>https://orcid.org/0000000301399503</orcidid><orcidid>https://orcid.org/0000000249511931</orcidid></search><sort><creationdate>20200129</creationdate><title>An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments</title><author>Stone-Weiss, Nicholas ; Youngman, Randall E ; Thorpe, Ryan ; Smith, Nicholas J ; Pierce, Eric M ; Goel, Ashutosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-7e69619eb3e9399aaaf6e49a86993b3b3bc6890916d239d1e046b637a5c1a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aluminum</topic><topic>Backscattering</topic><topic>Biomedical materials</topic><topic>Boron oxides</topic><topic>Borosilicate glass</topic><topic>Composition</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Dissolution</topic><topic>Elastic analysis</topic><topic>Electronic packaging</topic><topic>Literature reviews</topic><topic>Nepheline</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Photoelectrons</topic><topic>Radioactive wastes</topic><topic>Reaction kinetics</topic><topic>Recoil</topic><topic>Silicon dioxide</topic><topic>Sodium</topic><topic>Spectrum analysis</topic><topic>Touch screens</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stone-Weiss, Nicholas</creatorcontrib><creatorcontrib>Youngman, Randall E</creatorcontrib><creatorcontrib>Thorpe, Ryan</creatorcontrib><creatorcontrib>Smith, Nicholas J</creatorcontrib><creatorcontrib>Pierce, Eric M</creatorcontrib><creatorcontrib>Goel, Ashutosh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stone-Weiss, Nicholas</au><au>Youngman, Randall E</au><au>Thorpe, Ryan</au><au>Smith, Nicholas J</au><au>Pierce, Eric M</au><au>Goel, Ashutosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2020-01-29</date><risdate>2020</risdate><volume>22</volume><issue>4</issue><spage>1881</spage><epage>1896</epage><pages>1881-1896</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>The majority of the literature on glass corrosion focuses on understanding the dissolution kinetics and mechanisms of silicate glass chemistries in the neutral-to-alkaline aqueous regime owing to its relevance in the fields of nuclear waste immobilization and biomaterials. However, understanding the corrosion of silicate-based glass chemistries over a broad composition space in the acidic pH regime is essential for glass packaging and touch screen electronic display industries. A thorough literature review on this topic reveals only a handful of studies that discuss acid corrosion of silicate glasses and their derivatives-these include only a narrow set of silicate-based glass chemistries. Although the current literature successfully explains the dissolution kinetics of glasses based upon classically understood aqueous corrosion mechanisms, more recent advancements in atomic-scale characterization techniques, have enabled a better understanding of reactions taking place directly at the pristine glass-fluid interface which has facilitated the development of a unifying model describing corrosion behavior of silicate glasses. Based on the corrosion mechanisms described and the questions raised in preceding literature, the present study focuses on understanding the corrosion mechanisms governing metaluminous (Na/Al = 1) sodium aluminoborosilicate glasses in acidic environments across a wide composition-space (ranging from SiO
2
-rich to B
2
O
3
-rich compositions), with particular emphasis on understanding the reactions taking place near the glass-fluid interface. Using state-of-the-art characterization techniques including nuclear magnetic resonance (NMR) spectroscopy, Rutherford backscattering, X-ray photoelectron spectroscopy (XPS) and elastic recoil detection analysis (ERDA), it has been shown that stepwise B
2
O
3
substitutions into nepheline (NaAlSiO
4
) glass, although causing non-linear changes in glass structure network structural features, leads to strikingly linear increases in the forward dissolution rate at pH = 2. While the glasses undergo congruent dissolution in the forward rate regime, the residual rate regime displays evidence of preferential extraction near the glass surface (
i.e.
, enrichment in aluminum content upon corrosion through AlO
4
→ Al(OH)
3
evolution) implying that dissolution-re-precipitation processes may occur at the glass-fluid interface in both B
2
O
3
-rich and SiO
2
-rich glass compositions-albeit with vastly dissimilar reaction kinetics.
Sodium aluminoborosilicate glasses with wide-ranging compositions and structures corrode according to remarkably similar mechanisms in acidic environments.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>31912064</pmid><doi>10.1039/c9cp06064b</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4951-1931</orcidid><orcidid>https://orcid.org/0000-0001-7139-1940</orcidid><orcidid>https://orcid.org/0000-0002-6647-9865</orcidid><orcidid>https://orcid.org/0000-0002-8726-9525</orcidid><orcidid>https://orcid.org/0000-0003-0139-9503</orcidid><orcidid>https://orcid.org/0000000171391940</orcidid><orcidid>https://orcid.org/0000000266479865</orcidid><orcidid>https://orcid.org/0000000287269525</orcidid><orcidid>https://orcid.org/0000000301399503</orcidid><orcidid>https://orcid.org/0000000249511931</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2020-01, Vol.22 (4), p.1881-1896 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1581658 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Aluminum Backscattering Biomedical materials Boron oxides Borosilicate glass Composition Corrosion Corrosion mechanisms Dissolution Elastic analysis Electronic packaging Literature reviews Nepheline NMR Nuclear magnetic resonance Organic chemistry Photoelectrons Radioactive wastes Reaction kinetics Recoil Silicon dioxide Sodium Spectrum analysis Touch screens X ray photoelectron spectroscopy |
title | An insight into the corrosion of alkali aluminoborosilicate glasses in acidic environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20insight%20into%20the%20corrosion%20of%20alkali%20aluminoborosilicate%20glasses%20in%20acidic%20environments&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Stone-Weiss,%20Nicholas&rft.date=2020-01-29&rft.volume=22&rft.issue=4&rft.spage=1881&rft.epage=1896&rft.pages=1881-1896&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c9cp06064b&rft_dat=%3Cproquest_osti_%3E2347400969%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2347400969&rft_id=info:pmid/31912064&rfr_iscdi=true |