Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region
Climate extremes such as drought and heat waves can cause substantial reductions in terrestrial carbon uptake. Advancing projections of the carbon uptake response to future climate extremes depends on (1) identifying mechanistic links between the carbon cycle and atmospheric drivers, (2) detecting a...
Gespeichert in:
Veröffentlicht in: | Global biogeochemical cycles 2015-08, Vol.29 (8), p.1247-1265 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1265 |
---|---|
container_issue | 8 |
container_start_page | 1247 |
container_title | Global biogeochemical cycles |
container_volume | 29 |
creator | Parazoo, Nicholas C. Barnes, Elizabeth Worden, John Harper, Anna B. Bowman, Kevin B. Frankenberg, Christian Wolf, Sebastian Litvak, Marcy Keenan, Trevor F. |
description | Climate extremes such as drought and heat waves can cause substantial reductions in terrestrial carbon uptake. Advancing projections of the carbon uptake response to future climate extremes depends on (1) identifying mechanistic links between the carbon cycle and atmospheric drivers, (2) detecting and attributing uptake changes, and (3) evaluating models of land response and atmospheric forcing. Here, we combine model simulations, remote sensing products, and ground observations to investigate the impact of climate variability on carbon uptake in the Texas‐northern Mexico region. Specifically, we (1) examine the relationship between drought, carbon uptake, and variability of El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) using the Joint UK Land‐Environment Simulator (JULES) biosphere simulations from 1950–2012, (2) quantify changes in carbon uptake during record drought conditions in 2011, and (3) evaluate JULES carbon uptake and soil moisture in 2011 using observations from remote sensing and a network of flux towers in the region. Long‐term simulations reveal systematic decreases in regional‐scale carbon uptake during negative phases of ENSO and NAO, including amplified reductions of gross primary production (GPP) (−0.42 ± 0.18 Pg C yr−1) and net ecosystem production (NEP) (−0.14 ± 0.11 Pg C yr−1) during strong La Niña years. The 2011 megadrought caused some of the largest declines of GPP (−0.50 Pg C yr−1) and NEP (−0.23 Pg C yr−1) in our simulations. In 2011, consistent declines were found in observations, including high correlation of GPP and surface soil moisture (r = 0.82 ± 0.23, p = 0.012) in remote sensing‐based products. These results suggest a large‐scale response of carbon uptake to ENSO and NAO, and highlight a need to improve model predictions of ENSO and NAO in order to improve predictions of future impacts on the carbon cycle and the associated feedbacks to climate change.
Key Points
Carbon uptake in Texas‐northern Mexico is correlated with ENSO and the NAO
Widespread soil moisture deficits during negative ENSO and NAO years
This drives significant declines in GPP (−0.42 PgC), NEP (−0.14 PgC) |
doi_str_mv | 10.1002/2015GB005125 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1581304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1722171757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5783-ca8a62c8d2e0401be2d7ccc0530aa1be9a74545df7f93f1b224e45096aa432123</originalsourceid><addsrcrecordid>eNp90U1v1DAQBmALgcRSuPEDLLhwIGX8FSfHdlVCYdlFoqg3LK93Qt2m9mInYvvvawhCiAMna6znHenVEPKcwTED4G84MNWdAijG1QOyYK2UVcu5fEgW0DR1VXNRPyZPcr4GYFKpdkG-nod-mDA4pLGnZ-vPG2rDjo5XSNcnGxoDHTElzGPydqDOpm35mvajvUHqwy93gQebqxBTGVKgH_HgXaQJv_kYnpJHvR0yPvv9HpEvb88ulu-q1aY7X56sKqd0IypnG1tz1-w4ggS2Rb7TzjlQAqwtY2u1VFLtet23omfb0gmlgra2VgrOuDgiL-a9MY_eZOdHdFcuhoBuNEw1TIAs6NWM9il-n0onc-uzw2GwAeOUDdOcM8200oW-_IdexymFUqEoxrVqtKqLej0rl2LOCXuzT_7WpjvDwPy8iPn7IoXzmf_wA97915rudMlBMFFC1RzyecTDn5BNN6bWQitzue6M-NQ1sHp_aT6Iey3cmJA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1712758756</pqid></control><display><type>article</type><title>Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region</title><source>Wiley-Blackwell Journals</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>EZB Electronic Journals Library</source><creator>Parazoo, Nicholas C. ; Barnes, Elizabeth ; Worden, John ; Harper, Anna B. ; Bowman, Kevin B. ; Frankenberg, Christian ; Wolf, Sebastian ; Litvak, Marcy ; Keenan, Trevor F.</creator><creatorcontrib>Parazoo, Nicholas C. ; Barnes, Elizabeth ; Worden, John ; Harper, Anna B. ; Bowman, Kevin B. ; Frankenberg, Christian ; Wolf, Sebastian ; Litvak, Marcy ; Keenan, Trevor F. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Climate extremes such as drought and heat waves can cause substantial reductions in terrestrial carbon uptake. Advancing projections of the carbon uptake response to future climate extremes depends on (1) identifying mechanistic links between the carbon cycle and atmospheric drivers, (2) detecting and attributing uptake changes, and (3) evaluating models of land response and atmospheric forcing. Here, we combine model simulations, remote sensing products, and ground observations to investigate the impact of climate variability on carbon uptake in the Texas‐northern Mexico region. Specifically, we (1) examine the relationship between drought, carbon uptake, and variability of El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) using the Joint UK Land‐Environment Simulator (JULES) biosphere simulations from 1950–2012, (2) quantify changes in carbon uptake during record drought conditions in 2011, and (3) evaluate JULES carbon uptake and soil moisture in 2011 using observations from remote sensing and a network of flux towers in the region. Long‐term simulations reveal systematic decreases in regional‐scale carbon uptake during negative phases of ENSO and NAO, including amplified reductions of gross primary production (GPP) (−0.42 ± 0.18 Pg C yr−1) and net ecosystem production (NEP) (−0.14 ± 0.11 Pg C yr−1) during strong La Niña years. The 2011 megadrought caused some of the largest declines of GPP (−0.50 Pg C yr−1) and NEP (−0.23 Pg C yr−1) in our simulations. In 2011, consistent declines were found in observations, including high correlation of GPP and surface soil moisture (r = 0.82 ± 0.23, p = 0.012) in remote sensing‐based products. These results suggest a large‐scale response of carbon uptake to ENSO and NAO, and highlight a need to improve model predictions of ENSO and NAO in order to improve predictions of future impacts on the carbon cycle and the associated feedbacks to climate change.
Key Points
Carbon uptake in Texas‐northern Mexico is correlated with ENSO and the NAO
Widespread soil moisture deficits during negative ENSO and NAO years
This drives significant declines in GPP (−0.42 PgC), NEP (−0.14 PgC)</description><identifier>ISSN: 0886-6236</identifier><identifier>EISSN: 1944-9224</identifier><identifier>DOI: 10.1002/2015GB005125</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Atmospheric forcing ; Biogeochemistry ; Biosphere ; Carbon cycle ; Climate change ; Climate variability ; Drought ; El Nino ; ENVIRONMENTAL SCIENCES ; Heat waves ; hydrological cycle ; La Nina ; land surface modeling ; land/atmosphere interactions ; Marine ; Moisture ; Primary production ; Remote sensing ; Soil moisture ; Soil surfaces ; Soils ; Southern Oscillation</subject><ispartof>Global biogeochemical cycles, 2015-08, Vol.29 (8), p.1247-1265</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5783-ca8a62c8d2e0401be2d7ccc0530aa1be9a74545df7f93f1b224e45096aa432123</citedby><cites>FETCH-LOGICAL-c5783-ca8a62c8d2e0401be2d7ccc0530aa1be9a74545df7f93f1b224e45096aa432123</cites><orcidid>0000-0002-4424-7780 ; 0000000244247780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GB005125$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GB005125$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11494,27903,27904,45553,45554,46387,46446,46811,46870</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1581304$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Parazoo, Nicholas C.</creatorcontrib><creatorcontrib>Barnes, Elizabeth</creatorcontrib><creatorcontrib>Worden, John</creatorcontrib><creatorcontrib>Harper, Anna B.</creatorcontrib><creatorcontrib>Bowman, Kevin B.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><creatorcontrib>Wolf, Sebastian</creatorcontrib><creatorcontrib>Litvak, Marcy</creatorcontrib><creatorcontrib>Keenan, Trevor F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region</title><title>Global biogeochemical cycles</title><addtitle>Global Biogeochem. Cycles</addtitle><description>Climate extremes such as drought and heat waves can cause substantial reductions in terrestrial carbon uptake. Advancing projections of the carbon uptake response to future climate extremes depends on (1) identifying mechanistic links between the carbon cycle and atmospheric drivers, (2) detecting and attributing uptake changes, and (3) evaluating models of land response and atmospheric forcing. Here, we combine model simulations, remote sensing products, and ground observations to investigate the impact of climate variability on carbon uptake in the Texas‐northern Mexico region. Specifically, we (1) examine the relationship between drought, carbon uptake, and variability of El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) using the Joint UK Land‐Environment Simulator (JULES) biosphere simulations from 1950–2012, (2) quantify changes in carbon uptake during record drought conditions in 2011, and (3) evaluate JULES carbon uptake and soil moisture in 2011 using observations from remote sensing and a network of flux towers in the region. Long‐term simulations reveal systematic decreases in regional‐scale carbon uptake during negative phases of ENSO and NAO, including amplified reductions of gross primary production (GPP) (−0.42 ± 0.18 Pg C yr−1) and net ecosystem production (NEP) (−0.14 ± 0.11 Pg C yr−1) during strong La Niña years. The 2011 megadrought caused some of the largest declines of GPP (−0.50 Pg C yr−1) and NEP (−0.23 Pg C yr−1) in our simulations. In 2011, consistent declines were found in observations, including high correlation of GPP and surface soil moisture (r = 0.82 ± 0.23, p = 0.012) in remote sensing‐based products. These results suggest a large‐scale response of carbon uptake to ENSO and NAO, and highlight a need to improve model predictions of ENSO and NAO in order to improve predictions of future impacts on the carbon cycle and the associated feedbacks to climate change.
Key Points
Carbon uptake in Texas‐northern Mexico is correlated with ENSO and the NAO
Widespread soil moisture deficits during negative ENSO and NAO years
This drives significant declines in GPP (−0.42 PgC), NEP (−0.14 PgC)</description><subject>Atmospheric forcing</subject><subject>Biogeochemistry</subject><subject>Biosphere</subject><subject>Carbon cycle</subject><subject>Climate change</subject><subject>Climate variability</subject><subject>Drought</subject><subject>El Nino</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Heat waves</subject><subject>hydrological cycle</subject><subject>La Nina</subject><subject>land surface modeling</subject><subject>land/atmosphere interactions</subject><subject>Marine</subject><subject>Moisture</subject><subject>Primary production</subject><subject>Remote sensing</subject><subject>Soil moisture</subject><subject>Soil surfaces</subject><subject>Soils</subject><subject>Southern Oscillation</subject><issn>0886-6236</issn><issn>1944-9224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90U1v1DAQBmALgcRSuPEDLLhwIGX8FSfHdlVCYdlFoqg3LK93Qt2m9mInYvvvawhCiAMna6znHenVEPKcwTED4G84MNWdAijG1QOyYK2UVcu5fEgW0DR1VXNRPyZPcr4GYFKpdkG-nod-mDA4pLGnZ-vPG2rDjo5XSNcnGxoDHTElzGPydqDOpm35mvajvUHqwy93gQebqxBTGVKgH_HgXaQJv_kYnpJHvR0yPvv9HpEvb88ulu-q1aY7X56sKqd0IypnG1tz1-w4ggS2Rb7TzjlQAqwtY2u1VFLtet23omfb0gmlgra2VgrOuDgiL-a9MY_eZOdHdFcuhoBuNEw1TIAs6NWM9il-n0onc-uzw2GwAeOUDdOcM8200oW-_IdexymFUqEoxrVqtKqLej0rl2LOCXuzT_7WpjvDwPy8iPn7IoXzmf_wA97915rudMlBMFFC1RzyecTDn5BNN6bWQitzue6M-NQ1sHp_aT6Iey3cmJA</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Parazoo, Nicholas C.</creator><creator>Barnes, Elizabeth</creator><creator>Worden, John</creator><creator>Harper, Anna B.</creator><creator>Bowman, Kevin B.</creator><creator>Frankenberg, Christian</creator><creator>Wolf, Sebastian</creator><creator>Litvak, Marcy</creator><creator>Keenan, Trevor F.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union (AGU)</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7UA</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4424-7780</orcidid><orcidid>https://orcid.org/0000000244247780</orcidid></search><sort><creationdate>201508</creationdate><title>Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region</title><author>Parazoo, Nicholas C. ; Barnes, Elizabeth ; Worden, John ; Harper, Anna B. ; Bowman, Kevin B. ; Frankenberg, Christian ; Wolf, Sebastian ; Litvak, Marcy ; Keenan, Trevor F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5783-ca8a62c8d2e0401be2d7ccc0530aa1be9a74545df7f93f1b224e45096aa432123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atmospheric forcing</topic><topic>Biogeochemistry</topic><topic>Biosphere</topic><topic>Carbon cycle</topic><topic>Climate change</topic><topic>Climate variability</topic><topic>Drought</topic><topic>El Nino</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Heat waves</topic><topic>hydrological cycle</topic><topic>La Nina</topic><topic>land surface modeling</topic><topic>land/atmosphere interactions</topic><topic>Marine</topic><topic>Moisture</topic><topic>Primary production</topic><topic>Remote sensing</topic><topic>Soil moisture</topic><topic>Soil surfaces</topic><topic>Soils</topic><topic>Southern Oscillation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parazoo, Nicholas C.</creatorcontrib><creatorcontrib>Barnes, Elizabeth</creatorcontrib><creatorcontrib>Worden, John</creatorcontrib><creatorcontrib>Harper, Anna B.</creatorcontrib><creatorcontrib>Bowman, Kevin B.</creatorcontrib><creatorcontrib>Frankenberg, Christian</creatorcontrib><creatorcontrib>Wolf, Sebastian</creatorcontrib><creatorcontrib>Litvak, Marcy</creatorcontrib><creatorcontrib>Keenan, Trevor F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Water Resources Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Global biogeochemical cycles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parazoo, Nicholas C.</au><au>Barnes, Elizabeth</au><au>Worden, John</au><au>Harper, Anna B.</au><au>Bowman, Kevin B.</au><au>Frankenberg, Christian</au><au>Wolf, Sebastian</au><au>Litvak, Marcy</au><au>Keenan, Trevor F.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region</atitle><jtitle>Global biogeochemical cycles</jtitle><addtitle>Global Biogeochem. Cycles</addtitle><date>2015-08</date><risdate>2015</risdate><volume>29</volume><issue>8</issue><spage>1247</spage><epage>1265</epage><pages>1247-1265</pages><issn>0886-6236</issn><eissn>1944-9224</eissn><abstract>Climate extremes such as drought and heat waves can cause substantial reductions in terrestrial carbon uptake. Advancing projections of the carbon uptake response to future climate extremes depends on (1) identifying mechanistic links between the carbon cycle and atmospheric drivers, (2) detecting and attributing uptake changes, and (3) evaluating models of land response and atmospheric forcing. Here, we combine model simulations, remote sensing products, and ground observations to investigate the impact of climate variability on carbon uptake in the Texas‐northern Mexico region. Specifically, we (1) examine the relationship between drought, carbon uptake, and variability of El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) using the Joint UK Land‐Environment Simulator (JULES) biosphere simulations from 1950–2012, (2) quantify changes in carbon uptake during record drought conditions in 2011, and (3) evaluate JULES carbon uptake and soil moisture in 2011 using observations from remote sensing and a network of flux towers in the region. Long‐term simulations reveal systematic decreases in regional‐scale carbon uptake during negative phases of ENSO and NAO, including amplified reductions of gross primary production (GPP) (−0.42 ± 0.18 Pg C yr−1) and net ecosystem production (NEP) (−0.14 ± 0.11 Pg C yr−1) during strong La Niña years. The 2011 megadrought caused some of the largest declines of GPP (−0.50 Pg C yr−1) and NEP (−0.23 Pg C yr−1) in our simulations. In 2011, consistent declines were found in observations, including high correlation of GPP and surface soil moisture (r = 0.82 ± 0.23, p = 0.012) in remote sensing‐based products. These results suggest a large‐scale response of carbon uptake to ENSO and NAO, and highlight a need to improve model predictions of ENSO and NAO in order to improve predictions of future impacts on the carbon cycle and the associated feedbacks to climate change.
Key Points
Carbon uptake in Texas‐northern Mexico is correlated with ENSO and the NAO
Widespread soil moisture deficits during negative ENSO and NAO years
This drives significant declines in GPP (−0.42 PgC), NEP (−0.14 PgC)</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GB005125</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-4424-7780</orcidid><orcidid>https://orcid.org/0000000244247780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-6236 |
ispartof | Global biogeochemical cycles, 2015-08, Vol.29 (8), p.1247-1265 |
issn | 0886-6236 1944-9224 |
language | eng |
recordid | cdi_osti_scitechconnect_1581304 |
source | Wiley-Blackwell Journals; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; EZB Electronic Journals Library |
subjects | Atmospheric forcing Biogeochemistry Biosphere Carbon cycle Climate change Climate variability Drought El Nino ENVIRONMENTAL SCIENCES Heat waves hydrological cycle La Nina land surface modeling land/atmosphere interactions Marine Moisture Primary production Remote sensing Soil moisture Soil surfaces Soils Southern Oscillation |
title | Influence of ENSO and the NAO on terrestrial carbon uptake in the Texas-northern Mexico region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20ENSO%20and%20the%20NAO%20on%20terrestrial%20carbon%20uptake%20in%20the%20Texas-northern%20Mexico%20region&rft.jtitle=Global%20biogeochemical%20cycles&rft.au=Parazoo,%20Nicholas%20C.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2015-08&rft.volume=29&rft.issue=8&rft.spage=1247&rft.epage=1265&rft.pages=1247-1265&rft.issn=0886-6236&rft.eissn=1944-9224&rft_id=info:doi/10.1002/2015GB005125&rft_dat=%3Cproquest_osti_%3E1722171757%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1712758756&rft_id=info:pmid/&rfr_iscdi=true |