North American Extreme Precipitation Events and Related Large-Scale Meteorological Patterns: a Review of Statistical Methods, Dynamics, Modeling, and Trends
This paper surveys the current state of knowledge regarding Large-Scale Meteorological Patterns (LSMPs) associated with short-duration (less than one week) extreme precipitation events over North America. In contrast to teleconnections, which are typically defined based on the characteristic spatial...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2019-12, Vol.53 (12), p.6835-6875 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6875 |
---|---|
container_issue | 12 |
container_start_page | 6835 |
container_title | Climate dynamics |
container_volume | 53 |
creator | Barlow, Mathew Jr, William J Gutowski Gyakum, John R Katz, Richard W Lim, Young-kwon Schumacher, Russ S Wehner, Michael F Agel, Laurie Bosilovich, Michael G Collow, Allison Gershunov, Alexander Grotjahn, Richard Leung, Ruby Milrad, Shawn Min, Seung-Ki |
description | This paper surveys the current state of knowledge regarding Large-Scale Meteorological Patterns (LSMPs) associated with short-duration (less than one week) extreme precipitation events over North America. In contrast to teleconnections, which are typically defined based on the characteristic spatial variations of a meteorological field or on the remote circulation response to a known forcing, LSMPs are defined relative to the occurrence of a specific phenomenon—here, extreme precipitation—and with an emphasis on the synoptic scales that have a primary influence in individual events, have medium-range weather predictability, and are well-resolved in both weather and climate models. For the LSMP relationship with extreme precipitation, we consider the previous literature with respect to definitions and data, dynamical mechanisms, model representation, and climate change trends. There is considerable uncertainty in identifying extremes based on existing observational precipitation data and some limitations in analyzing the associated LSMPs in reanalysis data. Many different definitions of “extreme” are in use, making it difficult to directly compare different studies. Dynamically, several types of meteorological systems—extratropical cyclones, tropical cyclones, mesoscale convective systems, and mesohighs—and several mechanisms—fronts, atmospheric rivers, and orographic ascent—have been shown to be important aspects of extreme precipitation LSMPs. The extreme precipitation is often realized through mesoscale processes organized, enhanced, or triggered by the LSMP. Understanding of model representation, trends, and projections for LSMPs is at an early stage, although some 4 promising analysis techniques have been identified and the LSMP perspective is useful for evaluating model dynamics. |
doi_str_mv | 10.1007/s00382-019-04958-z |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1580989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A604937048</galeid><sourcerecordid>A604937048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-ede81d0acefe9f2226dd8af1ee45284ed136beed7decfba3c47f99a59cf9fae03</originalsourceid><addsrcrecordid>eNp9ksFuEzEQhlcIJELhBRAHCyQkpG6x17vZNbeolFIphaopZ8u1xxtXGzvYTmn7LDxsJ1kkyAX5YGv8_eOZ8V8Urxk9YpS2HxOlvKtKykRJa9F05cOTYsJqjqFO1E-LCRWclm3TNs-LFyndUMrqaVtNit_fQsxLMltBdFp5cnKXI6yAXETQbu2yyi5g9BZ8TkR5Qy5hUBkMmavYQ7nQagByDhlCDEPoMcdALlTOEH36RBTitw5-kWDJYpsr5R2BgmUw6ZB8vvdq5TSezoOBwfn-cPfKVQRv0svimVVDgld_9oPix5eTq-Ov5fz76dnxbF7qhjW5BAMdM1RpsCBsVVVTYzplGUDdVF0NhvHpNYBpDWh7rbiuWyuEaoS2wiqg_KB4O-YNWJ9M2mXQSx28B50lazoqOoHQuxFax_BzAynLm7CJHuuSVSU4b5t6ypE6GqkeByOdtyFHpXEZwD6DB-swPpviL_GW1h0KPuwJkMlwl3u1SUmeLS732ff_sEtQQ16mMGy2f5T2wWoEdQwpRbByHd1KxXvJqNwaRo6GkWgYuTOMfEARH0UJYd9D_Nvgf1VvRpVXSUmfI44D7xHEQmr-CDHDzbc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293375463</pqid></control><display><type>article</type><title>North American Extreme Precipitation Events and Related Large-Scale Meteorological Patterns: a Review of Statistical Methods, Dynamics, Modeling, and Trends</title><source>NASA Technical Reports Server</source><source>SpringerLink Journals - AutoHoldings</source><creator>Barlow, Mathew ; Jr, William J Gutowski ; Gyakum, John R ; Katz, Richard W ; Lim, Young-kwon ; Schumacher, Russ S ; Wehner, Michael F ; Agel, Laurie ; Bosilovich, Michael G ; Collow, Allison ; Gershunov, Alexander ; Grotjahn, Richard ; Leung, Ruby ; Milrad, Shawn ; Min, Seung-Ki</creator><creatorcontrib>Barlow, Mathew ; Jr, William J Gutowski ; Gyakum, John R ; Katz, Richard W ; Lim, Young-kwon ; Schumacher, Russ S ; Wehner, Michael F ; Agel, Laurie ; Bosilovich, Michael G ; Collow, Allison ; Gershunov, Alexander ; Grotjahn, Richard ; Leung, Ruby ; Milrad, Shawn ; Min, Seung-Ki ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>This paper surveys the current state of knowledge regarding Large-Scale Meteorological Patterns (LSMPs) associated with short-duration (less than one week) extreme precipitation events over North America. In contrast to teleconnections, which are typically defined based on the characteristic spatial variations of a meteorological field or on the remote circulation response to a known forcing, LSMPs are defined relative to the occurrence of a specific phenomenon—here, extreme precipitation—and with an emphasis on the synoptic scales that have a primary influence in individual events, have medium-range weather predictability, and are well-resolved in both weather and climate models. For the LSMP relationship with extreme precipitation, we consider the previous literature with respect to definitions and data, dynamical mechanisms, model representation, and climate change trends. There is considerable uncertainty in identifying extremes based on existing observational precipitation data and some limitations in analyzing the associated LSMPs in reanalysis data. Many different definitions of “extreme” are in use, making it difficult to directly compare different studies. Dynamically, several types of meteorological systems—extratropical cyclones, tropical cyclones, mesoscale convective systems, and mesohighs—and several mechanisms—fronts, atmospheric rivers, and orographic ascent—have been shown to be important aspects of extreme precipitation LSMPs. The extreme precipitation is often realized through mesoscale processes organized, enhanced, or triggered by the LSMP. Understanding of model representation, trends, and projections for LSMPs is at an early stage, although some 4 promising analysis techniques have been identified and the LSMP perspective is useful for evaluating model dynamics.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-019-04958-z</identifier><language>eng</language><publisher>Goddard Space Flight Center: Springer Nature</publisher><subject>Analysis ; Ascent ; Atmospheric models ; Climate ; Climate change ; Climate models ; Climatology ; Cyclones ; Duration ; Dynamic meteorology ; Dynamics ; Earth and Environmental Science ; Earth Sciences ; ENVIRONMENTAL SCIENCES ; Extratropical cyclones ; Extreme weather ; Fronts ; Geophysics/Geodesy ; Global temperature changes ; Hurricanes ; Hydrologic data ; Mathematical models ; Mesoscale convective systems ; Mesoscale processes ; Meteorology And Climatology ; Oceanography ; Precipitation ; Precipitation (Meteorology) ; Precipitation data ; Representations ; Spatial variations ; Statistical methods ; Surveys ; Trends ; Tropical climate ; Tropical cyclones ; Weather</subject><ispartof>Climate dynamics, 2019-12, Vol.53 (12), p.6835-6875</ispartof><rights>Copyright Determination: GOV_PERMITTED</rights><rights>The Author(s) 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2019). All Rights Reserved. © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-ede81d0acefe9f2226dd8af1ee45284ed136beed7decfba3c47f99a59cf9fae03</citedby><cites>FETCH-LOGICAL-c515t-ede81d0acefe9f2226dd8af1ee45284ed136beed7decfba3c47f99a59cf9fae03</cites><orcidid>0000-0002-7612-3811 ; 0000000276123811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-019-04958-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-019-04958-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,796,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1580989$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barlow, Mathew</creatorcontrib><creatorcontrib>Jr, William J Gutowski</creatorcontrib><creatorcontrib>Gyakum, John R</creatorcontrib><creatorcontrib>Katz, Richard W</creatorcontrib><creatorcontrib>Lim, Young-kwon</creatorcontrib><creatorcontrib>Schumacher, Russ S</creatorcontrib><creatorcontrib>Wehner, Michael F</creatorcontrib><creatorcontrib>Agel, Laurie</creatorcontrib><creatorcontrib>Bosilovich, Michael G</creatorcontrib><creatorcontrib>Collow, Allison</creatorcontrib><creatorcontrib>Gershunov, Alexander</creatorcontrib><creatorcontrib>Grotjahn, Richard</creatorcontrib><creatorcontrib>Leung, Ruby</creatorcontrib><creatorcontrib>Milrad, Shawn</creatorcontrib><creatorcontrib>Min, Seung-Ki</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>North American Extreme Precipitation Events and Related Large-Scale Meteorological Patterns: a Review of Statistical Methods, Dynamics, Modeling, and Trends</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>This paper surveys the current state of knowledge regarding Large-Scale Meteorological Patterns (LSMPs) associated with short-duration (less than one week) extreme precipitation events over North America. In contrast to teleconnections, which are typically defined based on the characteristic spatial variations of a meteorological field or on the remote circulation response to a known forcing, LSMPs are defined relative to the occurrence of a specific phenomenon—here, extreme precipitation—and with an emphasis on the synoptic scales that have a primary influence in individual events, have medium-range weather predictability, and are well-resolved in both weather and climate models. For the LSMP relationship with extreme precipitation, we consider the previous literature with respect to definitions and data, dynamical mechanisms, model representation, and climate change trends. There is considerable uncertainty in identifying extremes based on existing observational precipitation data and some limitations in analyzing the associated LSMPs in reanalysis data. Many different definitions of “extreme” are in use, making it difficult to directly compare different studies. Dynamically, several types of meteorological systems—extratropical cyclones, tropical cyclones, mesoscale convective systems, and mesohighs—and several mechanisms—fronts, atmospheric rivers, and orographic ascent—have been shown to be important aspects of extreme precipitation LSMPs. The extreme precipitation is often realized through mesoscale processes organized, enhanced, or triggered by the LSMP. Understanding of model representation, trends, and projections for LSMPs is at an early stage, although some 4 promising analysis techniques have been identified and the LSMP perspective is useful for evaluating model dynamics.</description><subject>Analysis</subject><subject>Ascent</subject><subject>Atmospheric models</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Cyclones</subject><subject>Duration</subject><subject>Dynamic meteorology</subject><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Extratropical cyclones</subject><subject>Extreme weather</subject><subject>Fronts</subject><subject>Geophysics/Geodesy</subject><subject>Global temperature changes</subject><subject>Hurricanes</subject><subject>Hydrologic data</subject><subject>Mathematical models</subject><subject>Mesoscale convective systems</subject><subject>Mesoscale processes</subject><subject>Meteorology And Climatology</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Precipitation (Meteorology)</subject><subject>Precipitation data</subject><subject>Representations</subject><subject>Spatial variations</subject><subject>Statistical methods</subject><subject>Surveys</subject><subject>Trends</subject><subject>Tropical climate</subject><subject>Tropical cyclones</subject><subject>Weather</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ksFuEzEQhlcIJELhBRAHCyQkpG6x17vZNbeolFIphaopZ8u1xxtXGzvYTmn7LDxsJ1kkyAX5YGv8_eOZ8V8Urxk9YpS2HxOlvKtKykRJa9F05cOTYsJqjqFO1E-LCRWclm3TNs-LFyndUMrqaVtNit_fQsxLMltBdFp5cnKXI6yAXETQbu2yyi5g9BZ8TkR5Qy5hUBkMmavYQ7nQagByDhlCDEPoMcdALlTOEH36RBTitw5-kWDJYpsr5R2BgmUw6ZB8vvdq5TSezoOBwfn-cPfKVQRv0svimVVDgld_9oPix5eTq-Ov5fz76dnxbF7qhjW5BAMdM1RpsCBsVVVTYzplGUDdVF0NhvHpNYBpDWh7rbiuWyuEaoS2wiqg_KB4O-YNWJ9M2mXQSx28B50lazoqOoHQuxFax_BzAynLm7CJHuuSVSU4b5t6ypE6GqkeByOdtyFHpXEZwD6DB-swPpviL_GW1h0KPuwJkMlwl3u1SUmeLS732ff_sEtQQ16mMGy2f5T2wWoEdQwpRbByHd1KxXvJqNwaRo6GkWgYuTOMfEARH0UJYd9D_Nvgf1VvRpVXSUmfI44D7xHEQmr-CDHDzbc</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Barlow, Mathew</creator><creator>Jr, William J Gutowski</creator><creator>Gyakum, John R</creator><creator>Katz, Richard W</creator><creator>Lim, Young-kwon</creator><creator>Schumacher, Russ S</creator><creator>Wehner, Michael F</creator><creator>Agel, Laurie</creator><creator>Bosilovich, Michael G</creator><creator>Collow, Allison</creator><creator>Gershunov, Alexander</creator><creator>Grotjahn, Richard</creator><creator>Leung, Ruby</creator><creator>Milrad, Shawn</creator><creator>Min, Seung-Ki</creator><general>Springer Nature</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer-Verlag</general><scope>CYE</scope><scope>CYI</scope><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7612-3811</orcidid><orcidid>https://orcid.org/0000000276123811</orcidid></search><sort><creationdate>20191201</creationdate><title>North American Extreme Precipitation Events and Related Large-Scale Meteorological Patterns: a Review of Statistical Methods, Dynamics, Modeling, and Trends</title><author>Barlow, Mathew ; Jr, William J Gutowski ; Gyakum, John R ; Katz, Richard W ; Lim, Young-kwon ; Schumacher, Russ S ; Wehner, Michael F ; Agel, Laurie ; Bosilovich, Michael G ; Collow, Allison ; Gershunov, Alexander ; Grotjahn, Richard ; Leung, Ruby ; Milrad, Shawn ; Min, Seung-Ki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-ede81d0acefe9f2226dd8af1ee45284ed136beed7decfba3c47f99a59cf9fae03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Ascent</topic><topic>Atmospheric models</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Cyclones</topic><topic>Duration</topic><topic>Dynamic meteorology</topic><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Extratropical cyclones</topic><topic>Extreme weather</topic><topic>Fronts</topic><topic>Geophysics/Geodesy</topic><topic>Global temperature changes</topic><topic>Hurricanes</topic><topic>Hydrologic data</topic><topic>Mathematical models</topic><topic>Mesoscale convective systems</topic><topic>Mesoscale processes</topic><topic>Meteorology And Climatology</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Precipitation (Meteorology)</topic><topic>Precipitation data</topic><topic>Representations</topic><topic>Spatial variations</topic><topic>Statistical methods</topic><topic>Surveys</topic><topic>Trends</topic><topic>Tropical climate</topic><topic>Tropical cyclones</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barlow, Mathew</creatorcontrib><creatorcontrib>Jr, William J Gutowski</creatorcontrib><creatorcontrib>Gyakum, John R</creatorcontrib><creatorcontrib>Katz, Richard W</creatorcontrib><creatorcontrib>Lim, Young-kwon</creatorcontrib><creatorcontrib>Schumacher, Russ S</creatorcontrib><creatorcontrib>Wehner, Michael F</creatorcontrib><creatorcontrib>Agel, Laurie</creatorcontrib><creatorcontrib>Bosilovich, Michael G</creatorcontrib><creatorcontrib>Collow, Allison</creatorcontrib><creatorcontrib>Gershunov, Alexander</creatorcontrib><creatorcontrib>Grotjahn, Richard</creatorcontrib><creatorcontrib>Leung, Ruby</creatorcontrib><creatorcontrib>Milrad, Shawn</creatorcontrib><creatorcontrib>Min, Seung-Ki</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barlow, Mathew</au><au>Jr, William J Gutowski</au><au>Gyakum, John R</au><au>Katz, Richard W</au><au>Lim, Young-kwon</au><au>Schumacher, Russ S</au><au>Wehner, Michael F</au><au>Agel, Laurie</au><au>Bosilovich, Michael G</au><au>Collow, Allison</au><au>Gershunov, Alexander</au><au>Grotjahn, Richard</au><au>Leung, Ruby</au><au>Milrad, Shawn</au><au>Min, Seung-Ki</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>North American Extreme Precipitation Events and Related Large-Scale Meteorological Patterns: a Review of Statistical Methods, Dynamics, Modeling, and Trends</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>53</volume><issue>12</issue><spage>6835</spage><epage>6875</epage><pages>6835-6875</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>This paper surveys the current state of knowledge regarding Large-Scale Meteorological Patterns (LSMPs) associated with short-duration (less than one week) extreme precipitation events over North America. In contrast to teleconnections, which are typically defined based on the characteristic spatial variations of a meteorological field or on the remote circulation response to a known forcing, LSMPs are defined relative to the occurrence of a specific phenomenon—here, extreme precipitation—and with an emphasis on the synoptic scales that have a primary influence in individual events, have medium-range weather predictability, and are well-resolved in both weather and climate models. For the LSMP relationship with extreme precipitation, we consider the previous literature with respect to definitions and data, dynamical mechanisms, model representation, and climate change trends. There is considerable uncertainty in identifying extremes based on existing observational precipitation data and some limitations in analyzing the associated LSMPs in reanalysis data. Many different definitions of “extreme” are in use, making it difficult to directly compare different studies. Dynamically, several types of meteorological systems—extratropical cyclones, tropical cyclones, mesoscale convective systems, and mesohighs—and several mechanisms—fronts, atmospheric rivers, and orographic ascent—have been shown to be important aspects of extreme precipitation LSMPs. The extreme precipitation is often realized through mesoscale processes organized, enhanced, or triggered by the LSMP. Understanding of model representation, trends, and projections for LSMPs is at an early stage, although some 4 promising analysis techniques have been identified and the LSMP perspective is useful for evaluating model dynamics.</abstract><cop>Goddard Space Flight Center</cop><pub>Springer Nature</pub><doi>10.1007/s00382-019-04958-z</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0002-7612-3811</orcidid><orcidid>https://orcid.org/0000000276123811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2019-12, Vol.53 (12), p.6835-6875 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_osti_scitechconnect_1580989 |
source | NASA Technical Reports Server; SpringerLink Journals - AutoHoldings |
subjects | Analysis Ascent Atmospheric models Climate Climate change Climate models Climatology Cyclones Duration Dynamic meteorology Dynamics Earth and Environmental Science Earth Sciences ENVIRONMENTAL SCIENCES Extratropical cyclones Extreme weather Fronts Geophysics/Geodesy Global temperature changes Hurricanes Hydrologic data Mathematical models Mesoscale convective systems Mesoscale processes Meteorology And Climatology Oceanography Precipitation Precipitation (Meteorology) Precipitation data Representations Spatial variations Statistical methods Surveys Trends Tropical climate Tropical cyclones Weather |
title | North American Extreme Precipitation Events and Related Large-Scale Meteorological Patterns: a Review of Statistical Methods, Dynamics, Modeling, and Trends |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A33%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=North%20American%20Extreme%20Precipitation%20Events%20and%20Related%20Large-Scale%20Meteorological%20Patterns:%20a%20Review%20of%20Statistical%20Methods,%20Dynamics,%20Modeling,%20and%20Trends&rft.jtitle=Climate%20dynamics&rft.au=Barlow,%20Mathew&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-12-01&rft.volume=53&rft.issue=12&rft.spage=6835&rft.epage=6875&rft.pages=6835-6875&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-019-04958-z&rft_dat=%3Cgale_osti_%3EA604937048%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293375463&rft_id=info:pmid/&rft_galeid=A604937048&rfr_iscdi=true |